1
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
Which one of the following statements is NOT TRUE for a continuous time causal and stable LTI system?
A
All the poles of the system must lie on the left side of the jω axis
B
Zeros of the system can lie anywhere in the s-plane
C
All the poles must lie within $$\left|s\right|\;=\;1$$
D
All the roots of the characteristic equation must be located on the left side of the jω axis
2
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
A polynomial $$f\left(x\right)\;=\;a_4x^4\;+\;a_3x^3\;+\;a_2x^2\;+\;a_1x\;-\;a_0$$ with all coefficients positive has
A
no real roots
B
no negative real root
C
odd number of real roots
D
at least one positive and one negative real root
3
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
The Bode plot of a transfer function G (s) is shown in the figure below. GATE ECE 2013 Control Systems - Frequency Response Analysis Question 54 English The gain (20 log $$\left| {G(s)} \right|$$ ) is 32 dB and -8dB at 1rad/s and 10rad/s respectively. The phase is negative for all $$\omega .$$ Then G(s) is
A
$${\textstyle{{39.8} \over s}}$$
B
$${\textstyle{{39.8} \over {{s^2}}}}$$
C
$${\textstyle{{32} \over {{s}}}}$$
D
$${\textstyle{{32} \over {{s^2}}}}$$
4
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state diagram of a system is shown below. A system is shown below. A system is described by the state variable equations GATE ECE 2013 Control Systems - State Space Analysis Question 21 English

The state-variable equations of the system shown in the figure above are

A
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr 1 & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ 1 & { - 1} \cr } } \right]X + u \cr} $$
B
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr { - 1} & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ { - 1} & { - 1} \cr } } \right]X + u \cr} $$
C
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr { - 1} & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ { - 1} & { - 1} \cr } } \right]X - u \cr} $$
D
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & { - 1} \cr 0 & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ 1 & { - 1} \cr } } \right]X - u \cr} $$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12