1
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
The return loss of a device is found to be 20 dB. The voltage standing wave ratio (VSWR) and magnitude of reflection coefficient are respectively.
A
1.22 and 0.1
B
0.81 and 0.1
C
- 1.22 and 0.1
D
2.44 and 0.2
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
A monochromatic plane wave of wavelength $$\lambda = 600$$ is propagating in the direction as shown in the figure below. $${\overrightarrow E _i},\,{\overrightarrow E _r}$$ and $${\overrightarrow E _t}$$ denote incident, reflected, and transmitted electric field vectors associated with the wave. GATE ECE 2013 Electromagnetics - Uniform Plane Waves Question 28 English

The angle of incidence $${\theta _i}$$ and the expression for $${\overrightarrow E _i}$$ are

A
$${60^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over {3\sqrt 2 }}}}\,\,V/m$$
B
$${45^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,V/m$$
C
$${45^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over {3\sqrt 2 }}}}\,\,V/m$$
D
$${60^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,V/m$$
3
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
A monochromatic plane wave of wavelength $$\lambda = 600$$ is propagating in the direction as shown in the figure below. $${\overrightarrow E _i},\,{\overrightarrow E _r}$$ and $${\overrightarrow E _t}$$ denote incident, reflected, and transmitted electric field vectors associated with the wave. GATE ECE 2013 Electromagnetics - Uniform Plane Waves Question 27 English

The expression for $${\overrightarrow E _r}$$ is

A
$$0.23{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x - z} \right)} \over {3\sqrt 2 }}}}\,\,\,V/m$$
B
$$ - {{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,\,V/m$$
C
$$0.44{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x - z} \right)} \over {3\sqrt 2 }}}}\,\,\,V/m$$
D
$${{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over 3}}}\,\,V/m$$
4
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
The divergence of the vector field $$\overrightarrow A\;=\;x{\widehat a}_x\;+\;y{\widehat a}_y\;+\;z{\widehat a}_z$$ is
A
$$0$$
B
1/3
C
1
D
3
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12