1
MHT CET 2021 24th September Morning Shift
+2
-0

If in a $$\triangle A B C$$, with usual notations, $$\mathrm{a}^2, \mathrm{~b}^2, \mathrm{c}^2$$ are in A.P. then $$\frac{\sin 3 B}{\sin B}=$$

A
$$\frac{a^2-c^2}{2 a c}$$
B
$$\left(\frac{a^2-c^2}{2 a c}\right)^2$$
C
$$\frac{\mathrm{a}^2-\mathrm{c}^2}{\mathrm{ac}}$$
D
$$\left(\frac{a^2-c^2}{a c}\right)^2$$
2
MHT CET 2021 23rd September Evening Shift
+2
-0

If $$\mathrm{G}(\overline{\mathrm{g}}), \mathrm{H}(\overline{\mathrm{h}})$$ and $$\mathrm{P}(\overline{\mathrm{p}})$$ are respectively centroid, orthocenter and circumcentre of a triangle and $$\mathrm{x} \overline{\mathrm{p}}+\mathrm{y} \overline{\mathrm{h}}+z \overline{\mathrm{g}}=\overline{0}$$, then $$\mathrm{x}, \mathrm{y}, \mathrm{z}$$ are respectively.

A
$$1,1,-2$$
B
$$1,3,-4$$
C
$$2,1,-3$$
D
$$2,3,-5$$
3
MHT CET 2021 23rd September Evening Shift
+2
-0

With usual notations in $$\triangle$$ABC, if $$\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$$, then $$a^2, b^2, c^2$$ are in

A
Not in AP
B
HP
C
AP
D
GP
4
MHT CET 2021 23rd September Evening Shift
+2
-0

The area of the triangle $$\mathrm{ABC}$$ is $$10 \sqrt{3} \mathrm{~cm}^2$$, angle $$\mathrm{B}$$ is $$60^{\circ}$$ and its perimeter is $$20 \mathrm{~cm}$$, then $$\ell(\mathrm{AC})=$$

A
10 cm
B
8 cm
C
5 cm
D
7 cm
EXAM MAP
Medical
NEET