A small steel ball is dropped from a height of $$1.5 \mathrm{~m}$$ into a glycerine jar. The ball reaches the bottom of the jar $$1.5 \mathrm{~s}$$ after it was dropped. If the retardation is $$2.66 \mathrm{~m} / \mathrm{s}^2$$, the height of the glycerine in the jar is about (acceleration due to gravity $$g=9.8 \mathrm{~m} / \mathrm{s}^2$$ )
A large number of bullets are fired in all directions with same speed '$$U$$'. The maximum area on the ground on which the bullets will spread is
Which one of the following statements is Wrong?
A ball is projected vertically upwards from ground. It reaches a height '$$h$$' in time $$t_1$$, continues its motion and then takes a time $$t_2$$ to reach ground. The height $h$ in terms of $$g, t_1$$ and $$\mathrm{t}_2$$ is $$(\mathrm{g}=$$ acceleration due to gravity)