1
GATE CSE 2001
+1
-0.3
The value of the integral is $${\rm I} = \int\limits_0^{{\raise0.5ex\hbox{\pi } \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{4}}} {{{\cos }^2}x\,dx}$$
A
$${\pi \over 8} + {1 \over 4}$$
B
$${\pi \over 8} - {1 \over 4}$$
C
$${{ - \pi } \over 8} - {1 \over 4}$$
D
$${{ - \pi } \over 8} + {1 \over 4}$$
2
GATE CSE 1998
+1
-0.3
Consider the function $$y = \left| x \right|$$ in the interval $$\left[ { - 1,1} \right]$$. In this interval, the function is
A
continuous and differentiable
B
continuous but not differentiable
C
differentiable but not continuous
D
neither continuous nor differentiable
3
GATE CSE 1996
+1
-0.3
The formula used to compute an approximation for the second derivative of a function $$f$$ at a point $${x_0}$$ is
A
$${{f\left( {{x_0} + h} \right) + f\left( {{x_0} - h} \right)} \over 2}$$
B
$${{f\left( {{x_0} + h} \right) - f\left( {{x_0} - h} \right)} \over 2h}$$
C
$${{f\left( {{x_0} + h} \right) + 2f\left( {{x_0}} \right) + f\left( {{x_0} - h} \right)} \over {{h^2}}}$$
D
$${{f\left( {{x_0} + h} \right) - 2f\left( {{x_0}} \right) + f\left( {{x_0} - h} \right)} \over {{h^2}}}$$
4
GATE CSE 1995
+1
-0.3
If at every point of a certain curve, the slope of the tangent equals $${{ - 2x} \over y}$$ the curve is
A
A straight line
B
A parabola
C
A circle
D
An ellipse
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization
EXAM MAP
Joint Entrance Examination