1
GATE CSE 2021 Set 1
Numerical
+1
-0

Consider the following expression

$$\mathop {\lim }\limits_{x \to -3} \frac{{\sqrt {2x + 22} - 4}}{{x + 3}}$$

The value of the above expression (rounded to 2 decimal places) is ______

Your input ____
2
GATE CSE 2020
MCQ (Single Correct Answer)
+1
-0.33
Consider the functions

I. $${e^{ - x}}$$

II. $${x^2} - \sin x$$

III. $$\sqrt {{x^3} + 1} $$

Which of the above functions is/are increasing everywhere in [0,1]?
A
III only
B
II and III only
C
II only
D
I and III only
3
GATE CSE 2019
MCQ (Single Correct Answer)
+1
-0.33
Compute $$\mathop {\lim }\limits_{x \to 3} {{{x^4} - 81} \over {2{x^2} - 5x - 3}}$$
A
1
B
Limit does not exits
C
$${{53} \over {12}}$$
D
$${{108} \over {7}}$$
4
GATE CSE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
If $$f\left( x \right)\,\,\, = \,\,\,R\,\sin \left( {{{\pi x} \over 2}} \right) + S.f'\left( {{1 \over 2}} \right) = \sqrt 2 $$ and $$\int_0^1 {f\left( x \right)dx = {{2R} \over \pi }} ,$$ then the constants $$R$$ and $$S$$ are respectively.
A
$${{2 \over \pi }}$$ and $${{16 \over \pi }}$$
B
$${{2 \over \pi }}$$ and $$0$$
C
$${{4 \over \pi }}$$ and $$0$$
D
$${{4 \over \pi }}$$ and $${{16 \over \pi }}$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP