1
GATE CSE 2021 Set 1
Numerical
+1
-0
Consider the following expression
$$\mathop {\lim }\limits_{x \to -3} \frac{{\sqrt {2x + 22} - 4}}{{x + 3}}$$
The value of the above expression (rounded to 2 decimal places) is ______
Your input ____
2
GATE CSE 2020
MCQ (Single Correct Answer)
+1
-0.33
Consider the functions
I. $${e^{ - x}}$$
II. $${x^2} - \sin x$$
III. $$\sqrt {{x^3} + 1} $$
Which of the above functions is/are increasing everywhere in [0,1]?
I. $${e^{ - x}}$$
II. $${x^2} - \sin x$$
III. $$\sqrt {{x^3} + 1} $$
Which of the above functions is/are increasing everywhere in [0,1]?
3
GATE CSE 2019
MCQ (Single Correct Answer)
+1
-0.33
Compute $$\mathop {\lim }\limits_{x \to 3} {{{x^4} - 81} \over {2{x^2} - 5x - 3}}$$
4
GATE CSE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
If $$f\left( x \right)\,\,\, = \,\,\,R\,\sin \left( {{{\pi x} \over 2}} \right) + S.f'\left( {{1 \over 2}} \right) = \sqrt 2 $$ and $$\int_0^1 {f\left( x \right)dx = {{2R} \over \pi }} ,$$ then the constants $$R$$ and $$S$$ are respectively.
Questions Asked from Calculus (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (1)
GATE CSE 2023 (2)
GATE CSE 2022 (1)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (1)
GATE CSE 2020 (1)
GATE CSE 2019 (1)
GATE CSE 2017 Set 2 (2)
GATE CSE 2016 Set 1 (1)
GATE CSE 2016 Set 2 (1)
GATE CSE 2015 Set 1 (2)
GATE CSE 2015 Set 3 (3)
GATE CSE 2014 Set 3 (1)
GATE CSE 2014 Set 1 (1)
GATE CSE 2013 (2)
GATE CSE 2012 (1)
GATE CSE 2010 (1)
GATE CSE 2008 (2)
GATE CSE 2007 (1)
GATE CSE 2003 (1)
GATE CSE 2001 (1)
GATE CSE 1998 (1)
GATE CSE 1996 (1)
GATE CSE 1995 (2)
GATE CSE 1993 (1)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages