1
GATE CSE 1996
+1
-0.3
The formula used to compute an approximation for the second derivative of a function $$f$$ at a point $${x_0}$$ is
A
$${{f\left( {{x_0} + h} \right) + f\left( {{x_0} - h} \right)} \over 2}$$
B
$${{f\left( {{x_0} + h} \right) - f\left( {{x_0} - h} \right)} \over 2h}$$
C
$${{f\left( {{x_0} + h} \right) + 2f\left( {{x_0}} \right) + f\left( {{x_0} - h} \right)} \over {{h^2}}}$$
D
$${{f\left( {{x_0} + h} \right) - 2f\left( {{x_0}} \right) + f\left( {{x_0} - h} \right)} \over {{h^2}}}$$
2
GATE CSE 1995
+1
-0.3
If at every point of a certain curve, the slope of the tangent equals $${{ - 2x} \over y}$$ the curve is
A
A straight line
B
A parabola
C
A circle
D
An ellipse
3
GATE CSE 1995
+1
-0.3
$$\mathop {Lim}\limits_{x \to \infty } {{{x^3} - \cos x} \over {{x^2} + {{\left( {\sin x} \right)}^2}}} = \_\_\_\_\_\_.$$
A
$$\infty$$
B
$$0$$
C
$$2$$
D
Does not exist
4
GATE CSE 1993
Fill in the Blanks
+1
-0
The value of the double integral $$\int\limits_0^1 {\int\limits_x^{{1 \over x}} {{x \over {1 + {y^2}}}\,\,dx\,\,dy = \_\_\_\_\_.} }$$
GATE CSE Subjects
EXAM MAP
Medical
NEET