1
GATE EE 1998
+1
-0.3
The laws of electromagnetic induction (Faraday's and Lenz's law) are summarized in the following equation
A
$$e = iR$$
B
$$e = L{{di} \over {dt}}$$
C
$$e = - {{d\psi } \over {dt}}$$
D
none of these
2
GATE EE 1995
+1
-0.3
A monochromatic plane electromagnetic wave travels in vacuum in the position $$x$$ direction ($$x, y, z$$ system of coordinates). The electric and magnetic fields can be expressed as
A
\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = {H_0}\cos \left( {kx - \omega t} \right){\widehat a_z} \cr}
B
\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = {H_0}\cos \left( {kx - \omega t - {\pi \over 2}} \right){\widehat a_z} \cr}
C
\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = - {H_0}\cos \left( {kx - \omega t} \right){\widehat a_z} \cr}
D
\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = - {H_0}\cos \left( {kx - \omega t - {\pi \over 2}} \right){\widehat a_z} \cr}
EXAM MAP
Medical
NEET