1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Solution, the variable $${x_1}$$ and $${x_2}$$ for the following equations is to be obtained by employing the Newton $$-$$ Raphson iteration method
equation (i) $$10\,{x_2}\,\sin \,{x_1} - 0.8 = 0$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$10\,x_2^2\, - 10\,{x_2}\cos \,{x_1} - 0.6 = 0$$
Assuming the initial values $${x_1} = 0.0$$ and $${x_2} = 1.0$$ the Jacobian matrix is
A
$$\left[ {\matrix{ {10} & { - 0.8} \cr 0 & { - 0.6} \cr } } \right]$$
B
$$\left[ {\matrix{ {10} & 0 \cr 0 & {10} \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & { - 0.8} \cr {10} & { - 0.6} \cr } } \right]$$
D
$$\left[ {\matrix{ {10} & 0 \cr {10} & { - 10} \cr } } \right]$$
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A differential equation $${{dx} \over {dt}} = {e^{ - 2t}}\,\,u\left( t \right)\,\,$$ has to be solved using trapezoidal rule of integration with a step size $$h=0.01$$ sec. Function $$u(t)$$ indicates a unit step function. If $$x(0)=0$$ then the value of $$x$$ at $$t=0.01$$ sec will be given by
A
$$0.00099$$
B
$$0.00495$$
C
$$0.0099$$
D
$$0.0198$$
3
GATE EE 1998
MCQ (Single Correct Answer)
+2
-0.6
The value of $$\,\,\,\int\limits_1^2 {{1 \over x}\,\,\,dx\,\,\,\,} $$ computed using simpson's rule with a step size of $$h=0.25$$ is
A
$$0.69430$$
B
$$0.69385$$
C
$$0.69325$$
D
$$0.69415$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12