1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Solution, the variable $${x_1}$$ and $${x_2}$$ for the following equations is to be obtained by employing the Newton $$-$$ Raphson iteration method
equation (i) $$10\,{x_2}\,\sin \,{x_1} - 0.8 = 0$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$10\,x_2^2\, - 10\,{x_2}\cos \,{x_1} - 0.6 = 0$$
Assuming the initial values $${x_1} = 0.0$$ and $${x_2} = 1.0$$ the Jacobian matrix is
equation (i) $$10\,{x_2}\,\sin \,{x_1} - 0.8 = 0$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$10\,x_2^2\, - 10\,{x_2}\cos \,{x_1} - 0.6 = 0$$
Assuming the initial values $${x_1} = 0.0$$ and $${x_2} = 1.0$$ the Jacobian matrix is
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A differential equation $${{dx} \over {dt}} = {e^{ - 2t}}\,\,u\left( t \right)\,\,$$ has to be solved using trapezoidal rule of integration with a step size $$h=0.01$$ sec. Function $$u(t)$$ indicates a unit step function. If $$x(0)=0$$ then the value of $$x$$ at $$t=0.01$$ sec will be given by
3
GATE EE 1998
MCQ (Single Correct Answer)
+2
-0.6
The value of $$\,\,\,\int\limits_1^2 {{1 \over x}\,\,\,dx\,\,\,\,} $$ computed using simpson's rule with a step size of $$h=0.25$$ is
Questions Asked from Numerical Methods (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics