1
GATE CSE 2021 Set 1
MCQ (Single Correct Answer)
+2
-0.67

Consider the following recurrence relation.

$$T(n) = \left\{ {\begin{array}{*{20}{c}} {T(n/2) + T(2n/5) + 7n \ \ \ if\ n > 0}\\ {1\ \ \ \ \ \ \ if\ n = 0} \end{array}} \right.$$

Which one of the following option is correct?

A
T(n) = Θ(n log n)
B
T(n) = Θ(n5/2)
C
T(n) = Θ((log n)5/2)
D
T(n) = Θ(n)
2
GATE CSE 2019
MCQ (Single Correct Answer)
+2
-0.67

There are n unsorted arrays : A1, A2, …, An. Assume that n is odd. Each of A1, A2, …, An contains n distinct elements. There are no common elements between any two arrays. The worst-case time complexity of computing the median of the medians of A1, A2, …, An is :

A
$$O\left( n \right)$$
B
$$O\left( {n\log n} \right)$$
C
$$O\left( {{n^2}\log n} \right)$$
D
$$O\left( {{n^2}} \right)$$
3
GATE CSE 2016 Set 2
Numerical
+2
-0
The given diagram shows the flowchart for a recursive function $$A(n).$$ Assume that all statements, except for the recursive calls, have $$O(1)$$ time complexity. If the worst case time complexity of this function is $$O\left( {{n^\alpha }} \right),$$ then the least possible value (accurate up to two decimal positions) of $$\alpha $$ is ____________ . GATE CSE 2016 Set 2 Algorithms - Complexity Analysis and Asymptotic Notations Question 16 English
Your input ____
4
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Let $$f\left( n \right) = n$$ and $$g\left( n \right) = {n^{\left( {1 + \sin \,\,n} \right)}},$$ where $$n$$ is a positive integer. Which of the following statements is/are correct?

$$\eqalign{ & \,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,\,\,f\left( n \right) = O\left( {g\left( n \right)} \right) \cr & \,\,\,\,\,{\rm I}{\rm I}.\,\,\,\,\,\,\,f\left( n \right) = \Omega \left( {g\left( n \right)} \right) \cr} $$

A
Only $${\rm I}$$
B
Only $${\rm I}$$$${\rm I}$$
C
both $${\rm I}$$ and $${\rm I}$$$${\rm I}$$
D
Neither $${\rm I}$$ nor $${\rm I}$$$${\rm I}$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP