1
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Let $$f\left( n \right) = n$$ and $$g\left( n \right) = {n^{\left( {1 + \sin \,\,n} \right)}},$$ where $$n$$ is a positive integer. Which of the following statements is/are correct?

$$\eqalign{ & \,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,\,\,f\left( n \right) = O\left( {g\left( n \right)} \right) \cr & \,\,\,\,\,{\rm I}{\rm I}.\,\,\,\,\,\,\,f\left( n \right) = \Omega \left( {g\left( n \right)} \right) \cr} $$

A
Only $${\rm I}$$
B
Only $${\rm I}$$$${\rm I}$$
C
both $${\rm I}$$ and $${\rm I}$$$${\rm I}$$
D
Neither $${\rm I}$$ nor $${\rm I}$$$${\rm I}$$
2
GATE CSE 2013
MCQ (Single Correct Answer)
+2
-0.6
The number of elements that can be stored in $$\Theta (\log n)$$ time using heap sort is
A
$$\Theta (1)$$
B
$$\Theta (\sqrt {\log n} )$$
C
$$\Theta ({{\log \,n} \over {\log \,\log \,n}})$$
D
$$\Theta (\log n)$$
3
GATE CSE 2011
MCQ (Single Correct Answer)
+2
-0.6
Which of the given options provides the increasing order of asymptotic Complexity of functions f1, f2, f3 and f4?
f1 = 2n f2 = n3/2
f3(n) = $$n\,\log _2^n$$
f4 (n) = n log2n
A
f3, f2, f4, f1
B
f3, f2, f1, f4
C
f2, f3, f1, f4
D
f2, f3, f4, f1
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the following functions: F(n) = 2n
G(n) = n!
H(n) = nlogn
Which of the following statements about the asymptotic behaviour of f(n), g(n), and h(n) is true?
A
f(n) = O (g(n)); g(n) = O(h(n))
B
f(n) = $$\Omega$$ (g(n)); g(n) = O(h(n))
C
g(n) = O (f(n)); h(n) = O(f(n))
D
h(n) = O (f(n)); g(n) = $$\Omega$$ (f(n))
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12