Consider a vector $\vec{u} = 2\hat{x} + \hat{y} + 2\hat{z}$, where $\hat{x}$, $\hat{y}$, $\hat{z}$ represent unit vectors along the coordinate axes $x$, $y$, $z$ respectively. The directional derivative of the function $f(x, y, z) = 2\ln(xy) + \ln(yz) + 3\ln(xz)$ at the point $(x, y, z) = (1, 1, 1)$ in the direction of $\vec{u}$ is
Let $$f(x,y,z) = 4{x^2} + 7xy + 3x{z^2}$$. The direction in which the function f(x, y, z) increases most rapidly at point P = (1, 0, 2) is
Let $$\overrightarrow E (x,y,z) = 2{x^2}\widehat i + 5y\widehat j + 3z\widehat k$$. The value of $$\mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt V} {(\overrightarrow \nabla \,.\,\overrightarrow E )dV} $$, where V is the volume enclosed by the unit cube defined by 0 $$\le$$ x $$\le$$ 1, 0 $$\le$$ y $$\le$$ 1, and 0 $$\le$$ z $$\le$$ 1, is