1
GATE EE 2024
MCQ (Single Correct Answer)
+2
-1.33

Consider a vector $\vec{u} = 2\hat{x} + \hat{y} + 2\hat{z}$, where $\hat{x}$, $\hat{y}$, $\hat{z}$ represent unit vectors along the coordinate axes $x$, $y$, $z$ respectively. The directional derivative of the function $f(x, y, z) = 2\ln(xy) + \ln(yz) + 3\ln(xz)$ at the point $(x, y, z) = (1, 1, 1)$ in the direction of $\vec{u}$ is

A

0

B

$\frac{7}{5\sqrt{2}}$

C

7

D

21

2
GATE EE 2022
MCQ (Single Correct Answer)
+2
-0.67

Let $$f(x,y,z) = 4{x^2} + 7xy + 3x{z^2}$$. The direction in which the function f(x, y, z) increases most rapidly at point P = (1, 0, 2) is

A
$$20\widehat i + 7\widehat j$$
B
$$20\widehat i + 7\widehat j + 12\widehat k$$
C
$$20\widehat i + 12\widehat k$$
D
$$20\widehat i$$
3
GATE EE 2022
MCQ (Single Correct Answer)
+2
-0.67

Let $$\overrightarrow E (x,y,z) = 2{x^2}\widehat i + 5y\widehat j + 3z\widehat k$$. The value of $$\mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt V} {(\overrightarrow \nabla \,.\,\overrightarrow E )dV} $$, where V is the volume enclosed by the unit cube defined by 0 $$\le$$ x $$\le$$ 1, 0 $$\le$$ y $$\le$$ 1, and 0 $$\le$$ z $$\le$$ 1, is

A
3
B
8
C
10
D
5
4
GATE EE 2016 Set 2
Numerical
+2
-0
The line integral of the vector field $$\,\,F = 5xz\widehat i + \left( {3{x^2} + 2y} \right)\widehat j + {x^2}z\widehat k\,\,$$ along a path from $$(0, 0, 0)$$ to $$(1,1,1)$$ parameterized by $$\left( {t,{t^2},t} \right)$$ is _________.
Your input ____
GATE EE Subjects
EXAM MAP