1
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+1
-0.3
$$\,\,\mathop {\lim }\limits_{x \to \infty } \,{x^{1/x}}\,\,$$ is
A
$$\infty $$
B
$$0$$
C
$$1$$
D
Not defined
2
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+1
-0.3
If $$g(x)=1-x$$ & $$h\left( x \right) = {x \over {x - 1}}\,\,$$ then $$\,\,{{g\left( {h\left( x \right)} \right)} \over {h\left( {g\left( x \right)} \right)}}\,\,\,$$ is
A
$${{h\left( x \right)} \over {g\left( x \right)}}$$
B
$${{ - 1} \over x}$$
C
$${{g\left( x \right)} \over {h\left( x \right)}}$$
D
$${x \over {{{\left( {1 - x} \right)}^2}}}$$
3
GATE CSE 2014 Set 3
Numerical
+1
-0
If $$\int_0^{2\pi } {\left| {x\sin x} \right|dx = k\pi ,} $$ then the values of $$k$$ is equal to _________ .
Your input ____
4
GATE CSE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let the function
$$f\left( \theta \right) = \left| {\matrix{ {\sin \,\theta } & {\cos \,\theta } & {\tan \,\theta } \cr {\sin \left( {{\pi \over 6}} \right)} & {\cos \left( {{\pi \over 6}} \right)} & {\tan \left( {{\pi \over 6}} \right)} \cr {\sin \left( {{\pi \over 3}} \right)} & {\cos \left( {{\pi \over 3}} \right)} & {\tan \left( {{\pi \over 3}} \right)} \cr } } \right|$$

Where $$\theta \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$ and $$f\left( \theta \right)$$ denote the derivative of $$f$$ with repect to $$\theta $$. Which of the following statements is/are TRUE?

$${\rm I})$$ There exists $$\theta \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$ such that $$f\left( \theta \right)$$ $$= 0$$.
$${\rm I}{\rm I})$$ There exists $$\theta \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$ such that $$f\left( \theta \right)$$ $$ \ne 0$$.

A
$${\rm I}$$ only
B
$${\rm I}$$$${\rm I}$$ only
C
Both $${\rm I}$$ and $${\rm I}$$$${\rm I}$$
D
neither $${\rm I}$$ nor $${\rm I}$$$${\rm I}$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12