1
GATE EE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Let the probability density function of a random variable $$X,$$ be given as: $$${f_x}\left( x \right) = {3 \over 2}{e^{ - 3x}}u\left( x \right) + a{e^{4x}}u\left( { - x} \right)$$$
where $$u(x)$$ is the unit step function. Then the value of $$'a'$$ and Prob $$\left\{ {X \le 0} \right\},$$ respectively, are
A
$$2,{1 \over 2}$$
B
$$4,{1 \over 2}$$
C
$$2,{1 \over 4}$$
D
$$4,{1 \over 4}$$
2
GATE EE 2016 Set 1
Numerical
+2
-0
Candidates were asked to come to an interview with $$3$$ pens each. Black, blue, green and red were the permitted pen colours that the candidate could bring. The probability that a candidate comes with all $$3$$ pens having the same colour is _______.
Your input ____
3
GATE EE 2015 Set 1
Numerical
+2
-0
A random variable $$X$$ has probability density function $$f(x)$$ as given below: $$$\,\,f\left( x \right) = \left\{ {\matrix{ {a + bx} & {for\,\,0 < x < 1} \cr 0 & {otherwise} \cr } } \right.\,\,$$$
If the expected value $$\,\,E\left[ X \right] = 2/3,\,\,$$ then $$\,\,\Pr \left[ {X < 0.5} \right]\,\,$$ is __________.
Your input ____
4
GATE EE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The probabilities that a student passes in Mathematics, Physics and Chemistry are $$m, p$$ and $$c$$ respectively. Of these subjects, the student has $$75$$% chance of passing in at least one, a $$50$$% chance of passing in at least two and a $$40$$% chance of passing in exactly two. Following relations are drawn in $$m, p, c:$$
$${\rm I}.$$ $$\,\,\,\,\,\,$$ $$p+m+c=27/20$$
$${\rm I}{\rm I}.$$ $$\,\,\,\,\,\,$$ $$p+m+c=13/20$$
$${\rm I}{\rm I}{\rm I}.$$ $$\,\,\,\,\,\,$$ $$\left( p \right) \times \left( m \right) \times \left( c \right) = 1/10$$
A
Only relation $${\rm I}$$ is true
B
Only relation $${\rm I}$$$${\rm I}$$ is true
C
Relations $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$ are true
D
Relations $${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$ are true
GATE EE Subjects
EXAM MAP