1
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let a causal $$LTI$$ system be characterized by the following differential equation, with initial rest condition
$${{{d^2}y} \over {d{t^2}}} + 7{{dy} \over {dt}} + 10y\left( t \right) = 4x\left( t \right) + 5{{dx\left( t \right)} \over {dt}}\,\,$$
$${{{d^2}y} \over {d{t^2}}} + 7{{dy} \over {dt}} + 10y\left( t \right) = 4x\left( t \right) + 5{{dx\left( t \right)} \over {dt}}\,\,$$
Where, $$x(t)$$ and $$y(t)$$ are the input and output respectively. The impulse response of the system is ($$u(t)$$ is the unit step function)
2
GATE EE 2002
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of the system described by $${{{d^2}y} \over {d{t^2}}} + {{dy} \over {dt}} = {{du} \over {dt}} + 2u$$ with $$u$$ as input and $$y$$ as output is
Questions Asked from Basics of Control System (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics