1
GATE EE 2012
MCQ (Single Correct Answer)
+1
-0.3
If $$x\left[ N \right] = {\left( {1/3} \right)^{\left| n \right|}} - {\left( {1/2} \right)^n}\,u\left[ n \right],$$ then the region of convergence $$(ROC)$$ of its $$Z$$-transform in the $$Z$$-plane will be
A
$${1 \over 3} < \left| z \right| < 3$$
B
$${1 \over 3} < \left| z \right| < {1 \over 2}$$
C
$${1 \over 2} < \left| z \right| < 3$$
D
$${1 \over 3} < \left| z \right|$$
2
GATE EE 2012
MCQ (Single Correct Answer)
+1
-0.3
The unilateral Laplace transform of $$f(t)$$ is
$$\,{1 \over {{s^2} + s + 1}}.$$ The unilateral Laplace transform of $$t$$ $$f(t)$$ is
A
$$ - {s \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$
B
$$ - {{2s + 1} \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$
C
$${s \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$
D
$${{2s + 1} \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$
3
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
Given $$f\left( t \right) = {L^{ - 1}}\left[ {{{3s + 1} \over {{s^3} + 4{s^2} + \left( {k - 3} \right)}}} \right].$$
$$\mathop {Lt}\limits_{t \to \propto } \,\,f\left( t \right) = 1$$ then value of $$k$$ is
A
$$1$$
B
$$2$$
C
$$3$$
D
$$4$$
4
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
Let $$Y(s)$$ be the Laplace transform of function $$y(t),$$ then the final value of the function is __________.
A
$$\mathop {Lim}\limits_{s \to 0} \,\,Y\left( s \right)$$
B
$$\mathop {Lim}\limits_{s \to \infty } \,\,Y\left( s \right)$$
C
$$\mathop {Lim}\limits_{s \to 0} \,s\,\,Y\left( s \right)$$
D
$$\mathop {Lim}\limits_{s \to \infty } \,s\,\,Y\left( s \right)$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12