1
GATE EE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Given $$f\left( z \right) = g\left( z \right) + h\left( z \right),$$ where $$f,g,h$$ are complex valued functions of a complex variable $$z.$$ Which ONE of the following statements is TRUE?
A
If $$f(z)$$ is differentiable at $${z_0},$$ then $$g(z)$$ & $$h(z)$$ are also differentiable at $${z_0}.$$
B
If $$g(z)$$ & $$h(z)$$ are differentiable at $${z_0},$$ then $$f(z)$$ is also differentiable at $${z_0}.$$
C
If $$f(z)$$ is continuous at $${z_0},$$ then it is differentiable at $${z_0}.$$
D
If $$f(z)$$ is differentiable at $${z_0},$$ then so are its real and imaginary parts.
2
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Integration of the complex function $$f\left( z \right) = {{{z^2}} \over {{z^2} - 1}},$$ in the counterclockwise direction, around $$\left| {z - 1} \right| = 1,$$ is
A
$$ - \pi i$$
B
$$0$$
C
$$\pi i$$
D
$$2\pi i$$
3
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
All the values of the multi valued complex function $${1^i},$$ where $$i = \sqrt { - 1} $$ are
A
purely imaginary
B
real and non negative
C
on the unit circle
D
equal in real and imaginary parts.
4
GATE EE 2013
MCQ (Single Correct Answer)
+1
-0.3
Square roots of $$-i,$$ where $$i = \sqrt { - 1} $$ are
A
$$i, -i$$
B
$$\eqalign{ & \cos \left( { - {\pi \over 4}} \right) + \sin \left( { - {\pi \over 4}} \right), \cr & \cos \left( {{{3\pi } \over 4}} \right) + i\,\sin \left( {{{3\pi } \over 4}} \right) \cr} $$
C
$$\eqalign{ & \cos \left( {{\pi \over 4}} \right) + i\sin \left( {{{3\pi } \over 4}} \right), \cr & \cos \left( {{{3\pi } \over 4}} \right) + i\sin \left( {{\pi \over 4}} \right) \cr} $$
D
$$\eqalign{ & \cos \left( {{{3\pi } \over 4}} \right) + i\sin \left( { - {{3\pi } \over 4}} \right), \cr & \cos \left( { - {{3\pi } \over 4}} \right) + i\sin \left( {{{3\pi } \over 4}} \right) \cr} $$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12