1
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation
$${{{d^2}y\left( t \right)} \over {d{t^2}}} + 2{{dy\left( t \right)} \over {dt}} + y\left( t \right) = \delta \left( t \right)$$
with $$y\left( t \right)\left| {_{t = 0} = - 2} \right.$$ and $${{dy} \over {dt}}\left| {_{t = 0}} \right. = 0.$$

The numerical value of $${{dy} \over {dt}}\left| {_{t = 0}.} \right.$$ is

A
$$-2$$
B
$$-1$$
C
$$0$$
D
$$-1$$
2
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Given $$f(t)$$ and $$g(t)$$ as shown below GATE EE 2011 Engineering Mathematics - Transform Theory Question 10 English

$$g(t)$$ can be expressed as

A
$$g(t)=f(2t-3)$$
B
$$g\left( t \right) = f\left( {{t \over 2} - 3} \right)$$
C
$$g\left( t \right) = f\left( {2t - {3 \over 2}} \right)$$
D
$$g\left( t \right) = f\left( {{t \over 2} - {3 \over 2}} \right)$$
3
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Given $$f(t)$$ and $$g(t)$$ as shown below GATE EE 2011 Engineering Mathematics - Transform Theory Question 9 English

The laplace transform of $$g(t)$$ is

A
$${1 \over s}\left[ {{e^{ - 3s}} - {e^{ - 5s}}} \right]$$
B
$${1 \over s}\left[ {{e^{ - 5s}} - {e^{ - 3s}}} \right]$$
C
$${{{e^{ - 3s}}} \over s}\left[ {1 - {e^{ - 2s}}} \right]$$
D
$${1 \over s}\left[ {{e^{ - 5s}} - {e^{ - 3s}}} \right]$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12