1
GATE ECE 2012
MCQ (Single Correct Answer)
+1
-0.3
If $$x\left[ n \right]$$= $${(1/3)^{\left| n \right|}} - {(1/2)^n}u\left[ n \right]$$, then the region of convergence (ROC) of its Z- transform in the Z-plane will be
A
$${1 \over 3} < \left| {z\,} \right| < 3$$
B
$${1 \over 3} < \left| {z\,} \right| < {1 \over 2}$$
C
$${1 \over 2} < \left| {z\,} \right| < 3$$
D
$${1 \over 3} < \left| {z\,} \right|$$
2
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The input x(t) and output y(t) of a system are related as y(t) = $$\int\limits_{ - \infty }^t x (\tau )\cos (3\tau )d\tau $$.

The system is

A
time-invariant and stable.
B
stable and not time-invariant.
C
time-invariant and not stable.
D
not time-invariant and not stable.
3
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The Fourier transform of a signal h(t) is $$H(j\omega )$$ =(2 cos $$\omega $$) (sin 2$$\omega $$) / $$\omega $$. The value of h(0) is
A
1/4
B
1/2
C
1
D
2
4
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
Let $$y\left[ n \right]$$ denote the convolution of $$h\left[ n \right]$$ and $$g\left[ n \right]$$, where $$h\left[ n \right]$$ $$ = \,{\left( {1/2} \right)^2}\,\,u\left[ n \right]$$ and $$g\left[ n \right]\,$$ is a causal sequence. If $$y\left[ 0 \right]\,$$ $$ = \,1$$ and $$y\left[ 1 \right]\,$$ $$ = \,1/2,$$ then $$g\left[ 1 \right]$$ equals
A
0
B
1/2
C
1
D
3/2
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12