1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the tangent at the point $(2 \sec \theta, 3 \tan \theta)$ to the hyperbola $\frac{x^2}{4}-\frac{y^2}{9}=1$ is parallel to $3 x-y+4=0$, then the value of $\theta$ is

A
$45^{\circ}$
B
$60^{\circ}$
C
$30^{\circ}$
D
$90^{\circ}$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$. The equation of the hyperbola with eccentricity 2 is

A
$\frac{x^2}{12}-\frac{y^2}{4}=1$
B
$\frac{x^2}{4}-\frac{y^2}{12}=1$
C
$\frac{x^2}{12}-\frac{y^2}{16}=1$
D
$\frac{x^2}{16}-\frac{y^2}{12}=1$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$. The equation of the hyperbola with eccentricity 2 is

A
$\frac{x^2}{12}-\frac{y^2}{4}=1$
B
$\frac{x^2}{4}-\frac{y^2}{12}=1$
C
$\frac{x^2}{12}-\frac{y^2}{16}=1$
D
$\frac{x^2}{16}-\frac{y^2}{12}=1$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The X and Y intercepts of the tangent to the hyperbola $\frac{x^2}{20}-\frac{y^2}{5}=1$ which is perpendicular to the line $4 x+3 y=7$, are respectively

A
$\frac{-10}{3}, \frac{-5}{3}$
B
$\frac{10}{3}, \frac{-5}{2}$
C
$\frac{10}{3}, \frac{5}{2}$
D
$\frac{10}{3}, \frac{5}{3}$
MHT CET Subjects
EXAM MAP