1
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
What is the minimum number of ordered pairs of non-negative numbers that should be chosen to ensure that there are two pairs $$(a, b)$$ and $$(c, d)$$ in the chosen set such that $$a \equiv c$$ mod $$3$$ and $$b \equiv d$$ mode $$5$$
A
$$4$$
B
$$6$$
C
$$16$$
D
$$24$$
2
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Let $$G\left( x \right) = 1/\left( {1 - x} \right)2 = \sum\limits_{i = 0}^\infty {g\left( i \right)\,{x^1}} \,\,\,,$$
where $$\left| x \right| < 1$$ What is $$g(i)$$?
A
$$1$$
B
$$i + 1$$
C
$$2$$ $$i$$
D
$$2i$$
3
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Let $$n = {p^2}q,$$ where $$p$$ and $$q$$ are distinct prime numbers. How many numbers $$m$$ satisfy $$1 \le m \le n$$ and $$gcd\left( {m.n} \right) = 1?$$ Note that $$gcd(m,n)$$ is the greatest common divisor of $$m$$ and $$n$$.
A
$$p(q-1)$$
B
$$pq$$
C
$$\left( {{p^2} - 1} \right)\left( {q - 1} \right)$$
D
$$p\left( {p - 1} \right)\left( {q - 1} \right)$$
4
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
The recurrence equation
$$\,\,\,\,\,\,\,T\left( 1 \right) = 1$$
$$\,\,\,\,\,\,T\left( n \right) = 2T\left( {n - 1} \right) + n,\,n \ge 2$$
evaluates to
A
$${2^{n + 1}} - n - 2$$
B
$${2^n} - n$$
C
$${2^{n + 1}} - 2n - 2$$
D
$${2^n} + n$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12