1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the polynomial $$P\left( x \right) = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3},$$ where $${a_i} \ne 0,\forall i$$. The minimum number of multiplications needed to evaluate $$p$$ on an input $$x$$ is
A
$$3$$
B
$$4$$
C
$$6$$
D
$$5$$
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
For each elements in a set of size $$2n$$, an unbiased coin in tossed. The $$2n$$ coin tosses are independent. An element is chhoosen if the corresponding coin toss were head.The probability that exactly $$n$$ elements are chosen is
A
$${{\left( {\matrix{ {2n} \cr n \cr } } \right)} \over {{4^n}}}$$
B
$${{\left( {\matrix{ {2n} \cr n \cr } } \right)} \over {{2^n}}}$$
C
$${1 \over {\left( {\matrix{ {2n} \cr n \cr } } \right)}}$$
D
$${1 \over 2}$$
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
What is the cardinality of the set of integers $$X$$ defined below?
$$X = $$ {$$n\left| {1 \le n \le 123,\,\,\,\,\,n} \right.$$ is not divisible by either $$2, 3$$ or $$5$$ }
A
$$28$$
B
$$33$$
C
$$37$$
D
$$44$$
4
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
What is the minimum number of ordered pairs of non-negative numbers that should be chosen to ensure that there are two pairs $$(a, b)$$ and $$(c, d)$$ in the chosen set such that $$a \equiv c$$ mod $$3$$ and $$b \equiv d$$ mode $$5$$
A
$$4$$
B
$$6$$
C
$$16$$
D
$$24$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12