1
GATE CSE 2006
+2
-0.6
For each elements in a set of size $$2n$$, an unbiased coin in tossed. The $$2n$$ coin tosses are independent. An element is chhoosen if the corresponding coin toss were head.The probability that exactly $$n$$ elements are chosen is
A
$${{\left( {\matrix{ {2n} \cr n \cr } } \right)} \over {{4^n}}}$$
B
$${{\left( {\matrix{ {2n} \cr n \cr } } \right)} \over {{2^n}}}$$
C
$${1 \over {\left( {\matrix{ {2n} \cr n \cr } } \right)}}$$
D
$${1 \over 2}$$
2
GATE CSE 2006
+2
-0.6
What is the cardinality of the set of integers $$X$$ defined below?
$$X =$$ {$$n\left| {1 \le n \le 123,\,\,\,\,\,n} \right.$$ is not divisible by either $$2, 3$$ or $$5$$ }
A
$$28$$
B
$$33$$
C
$$37$$
D
$$44$$
3
GATE CSE 2005
+2
-0.6
What is the minimum number of ordered pairs of non-negative numbers that should be chosen to ensure that there are two pairs $$(a, b)$$ and $$(c, d)$$ in the chosen set such that $$a \equiv c$$ mod $$3$$ and $$b \equiv d$$ mode $$5$$
A
$$4$$
B
$$6$$
C
$$16$$
D
$$24$$
4
GATE CSE 2005
+2
-0.6
Let $$G\left( x \right) = 1/\left( {1 - x} \right)2 = \sum\limits_{i = 0}^\infty {g\left( i \right)\,{x^1}} \,\,\,,$$
where $$\left| x \right| < 1$$ What is $$g(i)$$?
A
$$1$$
B
$$i + 1$$
C
$$2$$ $$i$$
D
$$2i$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization
EXAM MAP
Joint Entrance Examination