1
GATE CSE 2014 Set 3
Numerical
+1
-0
The minimum number of arithmetic operations required to evaluate the polynomial P(X) = X5 + 4X3 + 6X + 5 for a given value of X using only one temporary variable is _____.
Your input ____
2
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
You have an array of n elements. Suppose you implement quicksort by always choosing the central element of the array as the pivot. Then the tightest upper bound for the worst case performance is
3
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Which one of the following correctly determines the solution of the recurrence relation with T(1) = 1?
T(1) = 2T (n/2) + log n
T(1) = 2T (n/2) + log n
4
GATE CSE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot. Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively. Which one of the following holds?
Questions Asked from Divide and Conquer Method (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages