1
GATE CSE 2019
Numerical
+1
-0.33
Consider a sequence of 14 elements: A = [-5, -10, 6, 3, -1, -2, 13, 4, -9, -1, 4, 12, -3, 0]. The subsequence sum $$S\left( {i,j} \right) = \sum\limits_{k = 1}^j {A\left[ k \right]} $$. Determine the maximum of S(i, j), where 0 ≤ i ≤ j < 14. (Divide and conquer approach may be used)

Answer : ________.
Your input ____
2
GATE CSE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot. Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively. Which one of the following holds?
A
t1 = 5
B
t1 < t2
C
t1 > t2
D
t1 = t2
3
GATE CSE 2014 Set 3
Numerical
+1
-0
The minimum number of arithmetic operations required to evaluate the polynomial P(X) = X5 + 4X3 + 6X + 5 for a given value of X using only one temporary variable is _____.
Your input ____
4
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
You have an array of n elements. Suppose you implement quicksort by always choosing the central element of the array as the pivot. Then the tightest upper bound for the worst case performance is
A
O(n2)
B
O(n log n)
C
$$\Theta (n \log n)$$
D
O(n3)
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12