1
GATE CSE 2019
Numerical
+1
-0.33
Consider a sequence of 14 elements: A = [-5, -10, 6, 3, -1, -2, 13, 4, -9, -1, 4, 12, -3, 0]. The subsequence sum $$S\left( {i,j} \right) = \sum\limits_{k = 1}^j {A\left[ k \right]} $$. Determine the maximum of S(i, j), where 0 ≤ i ≤ j < 14. (Divide and conquer approach may be used)
Answer : ________.
Answer : ________.
Your input ____
2
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Which one of the following correctly determines the solution of the recurrence relation with T(1) = 1?
T(1) = 2T (n/2) + log n
T(1) = 2T (n/2) + log n
3
GATE CSE 2014 Set 3
Numerical
+1
-0
The minimum number of arithmetic operations required to evaluate the polynomial P(X) = X5 + 4X3 + 6X + 5 for a given value of X using only one temporary variable is _____.
Your input ____
4
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
You have an array of n elements. Suppose you implement quicksort by always choosing the central element of the array as the pivot. Then the tightest upper bound for the worst case performance is
Questions Asked from Divide and Conquer Method (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages