1
GATE CSE 2014 Set 1
Numerical
+2
-0
The function $$f(x) =$$ $$x$$ $$sinx$$ satisfies the following equation:
$$f$$"$$\left( x \right) + f\left( x \right) + t\,\cos \,x\,\, = \,\,0$$. The value of $$t$$ is ______ .
2
GATE CSE 2014 Set 3
+2
-0.6
The value of the integral given below is $$\int_0^\pi {{x^2}\,\cos \,x\,dx}$$\$
A
$$- 2\pi$$
B
$$\pi$$
C
$$-\pi$$
D
$$2\pi$$
3
GATE CSE 2014 Set 3
Numerical
+2
-0
Suppose you want to move from 0 to 100 on the number line. In each step, you either move right by a unit distance or you take a shortcut. A shortcut is simply a pre specified pair of integers i, j with i < j. Given a shortcut i, j if you are at position i on the number line, you may directly move to j. suppose T(k) denotes the smallest number of steps needed to move from k to 100. Suppose further that there is at most 1 shortcut involving any number, and in particular from 9 there is a shortcut to 15. Let y and z be such that T(9) = 1+ min(T(y),T(z)). Then the value of the product yz is _______.
4
GATE CSE 2011
+2
-0.6
Given $$i = \sqrt { - 1} ,$$ what will be the evaluation of the definite integral $$\int\limits_0^{\pi /2} {{{\cos x +i \sin x} \over {\cos x - i\,\sin x}}dx?}$$
A
$$0$$
B
$$2$$
C
$$-1$$
D
$$i$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization
EXAM MAP
Joint Entrance Examination