1
GATE CSE 2009
+2
-0.6
$$\int\limits_0^{\pi /4} {\left( {1 - \tan x} \right)/\left( {1 + \tan x} \right)dx}$$ $$\,\,\,\,\,\,$$ evaluates to
A
$$0$$
B
$$1$$
C
In $$2$$
D
$${1 \over 2}$$ in $$2$$
2
GATE CSE 2008
+2
-0.6
If $$\,\,\,\,f\,\,\,\,\left( x \right)$$ is defined as follows, what is the minimum value of $$f\,\left( x \right)$$ for $$x \in \left( {0,2} \right)$$ ? $$f\left( x \right) = \left\{ {\matrix{ {{{25} \over {8x}}\,\,when\,\,x \le {3 \over 2}} \cr {x + {1 \over x}other\,wise} \cr } } \right.$$\$
A
$$2$$
B
$$2{1 \over {12}}$$
C
$$2{1 \over {6}}$$
D
$$2{1 \over {2}}$$
3
GATE CSE 2008
+2
-0.6
A point on a curve is said to be an extremum if it is a local minimum or a local maximum. The number of distinct extrema for the curve $$3{x^4} - 16{x^3} + 24{x^2} + 37$$ is
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
4
GATE CSE 2005
+2
-0.6
What is the value of $$\int\limits_0^{2\pi } {{{\left( {x - \pi } \right)}^3}\left( {\sin x} \right)dx}$$
A
$$-1$$
B
$$0$$
C
$$1$$
D
$$\pi$$
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination