Let G = (V, E) be an undirected unweighted connected graph. The diameter of G is defined as:
diam(G) = $$\displaystyle\max_{u, x\in V}$$ {the length of shortest path between u and v}
Let M be the adjacency matrix of G.
Define graph G2 on the same set of vertices with adjacency matrix N, where
$$N_{ij} =\left\{ {\begin{array}{*{20}{c}} {1 \ \ \text{if} \ \ {M_{ij}} > 0 \ \ \text{or} \ \ P_{ij} > 0, \ \text{where} \ \ P = {M^2}}\\ {0, \ \ \ \ \ \text{otherwise}} \end{array}} \right.$$
Which one of the following statements is true?
Let G be any connected, weighted, undirected graph.
I. G has a unique minimum spanning tree, if no two edges of G have the same weight.
II. G has a unique minimum spanning tree, if, for every cut of G, there is a unique minimum-weight edge crossing the cut.
Which of the above two statements is/are TRUE?