1
GATE CSE 2015 Set 3
Numerical
+2
-0
Let $$G$$ be a connected undirected graph of $$100$$ vertices and $$300$$ edges. The weight of a minimum spanning tree of $$G$$ is $$500.$$ When the weight of each edge of $$G$$ is increased by five, the weight of a minimum spanning tree becomes ________.
Your input ____
2
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let G = (V, E) be a simple undirected graph, and s be a particular vertex in it called the source. For $$x \in V$$, let d(x) denote the shortest distance in G from s to x. A breadth first search (BFS) is performed starting at s. Let T be the resultant BFS tree. If (u, v) is an edge of G that is not in T, then which one of the following CANNOT be the value of $$d\left( u \right) - d\left( v \right)$$?
A
-1
B
0
C
1
D
2
3
GATE CSE 2012
MCQ (Single Correct Answer)
+2
-0.6
Let G be a weighted graph with edge weights greater than one and G' be the graph constructed by squaring the weights of edges in G. Let T and T' be the minimum spanning trees of G and G' respectively, with total weights t and t'. Which of the following statements is TRUE?
A
T' = T with total weight t' = t2
B
T' = T with total weight t' < t2
C
T' =! T but total weight t' = t2
D
None of these
4
GATE CSE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a complete undirected graph with vertex set {0,1,2,3,4}. Entry Wij in the matrix W below is the weight of the edge {i, j} $$$W = \left( {\matrix{ 0 & 1 & 8 & 1 & 4 \cr 1 & 0 & {12} & 4 & 9 \cr 8 & {12} & 0 & 7 & 3 \cr 1 & 4 & 7 & 0 & 2 \cr 4 & 9 & 3 & 2 & 0 \cr } } \right)$$$ What is the minimum possible weight of a spanning tree T in this graph such that vertex 0 is a leaf node in the tree T?
A
7
B
8
C
9
D
10
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP