1

GATE CSE 2016 Set 2

MCQ (Single Correct Answer)

+2

-0.6

In an adjacency list representation of an undirected simple graph $$G = (V,E),$$ each edge $$(u, v)$$ has two adjacency list entries: $$[v]$$ in the adjacency list of $$u,$$ and $$[u]$$ in the adjacency list of $$v.$$ These are called twins of each other. A twin pointer is a pointer from an adjacency list entry to its twin. If $$|E| = m$$ and $$|V| = n,$$ and the memory size is not a constraint, what is the time complexity of the most efficient algorithm to set the twin pointer in each entry in each adjacency list?

2

GATE CSE 2015 Set 3

Numerical

+2

-0

Let $$G$$ be a connected undirected graph of $$100$$ vertices and $$300$$ edges. The weight of a minimum spanning tree of $$G$$ is $$500.$$ When the weight of each edge of $$G$$ is increased by five, the weight of a minimum spanning tree becomes ________.

Your input ____

3

GATE CSE 2015 Set 1

MCQ (Single Correct Answer)

+2

-0.6

Let G = (V, E) be a simple undirected graph, and s be a particular vertex in it called the source. For $$x \in V$$, let d(x) denote the shortest distance in G from s to x. A breadth first search (BFS) is performed starting at s. Let T be the resultant BFS tree. If (u, v) is an edge of G that is not in T, then which one of the following CANNOT be the value of $$d\left( u \right) - d\left( v \right)$$?

4

GATE CSE 2012

MCQ (Single Correct Answer)

+2

-0.6

Let G be a weighted graph with edge weights greater than one and G' be the graph constructed by squaring the weights of edges in G. Let T and T' be the minimum spanning trees of G and G' respectively, with total weights t and t'. Which of the following statements is TRUE?

Questions Asked from Graphs (Marks 2)

Number in Brackets after Paper Indicates No. of Questions

GATE CSE Subjects

Theory of Computation

Operating Systems

Algorithms

Database Management System

Data Structures

Computer Networks

Software Engineering

Compiler Design

Web Technologies

General Aptitude

Discrete Mathematics

Programming Languages