1
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Given below are some algorithms, and some algorithm design paradigms.
GROUP 1 | GROUP 2 |
---|---|
1. Dijkstra's Shortest Path | i. Divide and Conquer |
2. Floyd-Warshall algorithm to compute all pairs shortest path |
ii. Dynamic Programming |
3. Binary search on a sorted array | iii. Greedy design |
4. Backtracking search on a graph | iv. Depth-first search |
v. Breadth-first search |
Match the above algorithms on the left to the corresponding design paradigm they follow.
2
GATE CSE 2014 Set 2
Numerical
+2
-0
Consider two strings A = “qpqrr” and B = “pqprqrp”. Let x be the length of the longest common subsequence (not necessarily contiguous) between A and B and let y be the number of such longest common subsequences between A and B. Then x + 10y = ___.
Your input ____
3
GATE CSE 2011
MCQ (Single Correct Answer)
+2
-0.6
Four matrices M1, M2, M3 and M4 of dimensions p $$\times$$ q, q $$\times$$ r, r $$\times$$ s and s $$\times$$ t respectively can be multiplied is several ways with different number of total scalar multiplications. For example, when multiplied as ((M1 $$\times$$ M2) $$\times$$ (M3 $$\times$$ M4)), the total number of multiplications is pqr + rst + prt. When multiplied as (((M1 $$\times$$ M2) $$\times$$ M3) $$\times$$ M4), the total number of scalar multiplications is pqr + prs + pst.
If p = 10, q = 100, r = 20, s = 5 and t = 80, then the number of scalar multiplications needed is:
If p = 10, q = 100, r = 20, s = 5 and t = 80, then the number of scalar multiplications needed is:
4
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
A sub-sequence of a given sequence is just the given sequence with some elements (possibly none or all) left out. We are given two sequences X[m] and Y[n] of lengths m and n, respectively with indexes of X and Y starting from 0.
We wish to find the length of the longest common sub-sequence (LCS) of X[m] and Y[n] as l(m,n), where an incomplete recursive definition for the function I(i,j) to compute the length of the LCS of X[m] and Y[n] is given below:
We wish to find the length of the longest common sub-sequence (LCS) of X[m] and Y[n] as l(m,n), where an incomplete recursive definition for the function I(i,j) to compute the length of the LCS of X[m] and Y[n] is given below:
l(i,j) = 0, if either i = 0 or j = 0
= expr1, if i,j > 0 and X[i-1] = Y[j-1]
= expr2, if i,j > 0 and X[i-1] ≠ Y[j-1]
Which one of the following options is correct?Questions Asked from Dynamic Programming (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages