1
GATE ECE 2018
MCQ (Single Correct Answer)
+2
-0.67
A four-variable Boolean function is realized using 4 $$ \times $$ 1 multiplexers as shown in the figure. GATE ECE 2018 Digital Circuits - Combinational Circuits Question 5 English
The minimized expression for F(U, V, W, X) is
A
$$\left( {UV + \overline U \overline V } \right)\overline W $$
B
$$\left( {UV + \overline U \overline V } \right)\left( {\overline W \overline X + \overline W X} \right)$$
C
$$\left( {U\overline V + \overline U V} \right)\overline W $$
D
$$\left( {U\overline V + \overline U V} \right)\left( {\overline W \overline X + \overline W X} \right)$$
2
GATE ECE 2018
MCQ (Single Correct Answer)
+1
-0.33
A function F(A, B, C) defined by three Boolean variables A, B and C when expressed as sum of products is given by

F = $$\overline A .\overline B .\overline C + \overline A .B.\overline C + A.\overline B .\overline C $$

where, $$\overline A $$, $$\overline B $$, and $$\overline C $$ are the complements of the respective variables. The product of sums (POS) form of the function F is
A
F = (A + B + C)(A + $$\overline B $$ + C)($$\overline A $$ + B + C)
B
F = ($$\overline A $$ + $$\overline B $$ + $$\overline C $$)($$\overline A $$ + B + $$\overline C $$)(A + $$\overline B $$ + $$\overline C $$)
C
F = (A + B + $$\overline C $$)(A + $$\overline B $$ + $$\overline C $$)($$\overline A $$ + B + $$\overline C $$)($$\overline A $$ + $$\overline B $$ + C)($$\overline A $$ + $$\overline B $$ + $$\overline C $$)
D
F = ($$\overline A $$ + $$\overline B $$ + C)($$\overline A $$ + B + C)(A + $$\overline B $$ + C)(A + B + $$\overline C $$)(A + B + C)
3
GATE ECE 2018
MCQ (Single Correct Answer)
+1
-0.33
Let M be a real 4 $$ \times $$ 4 matrix. Consider the following statements :

S1: M has 4 linearly independent eigenvectors.

S2: M has 4 distinct eigenvalues.

S3: M is non-singular (invertible).

Which one among the following is TRUE?
A
S1 implies S2
B
S2 implies S1
C
S1 implies S3
D
S3 implies S2
4
GATE ECE 2018
Numerical
+1
-0
Consider matrix $$A = \left[ {\matrix{ k & {2k} \cr {{k^2} - k} & {{k^2}} \cr } } \right]$$ and

vector $$X = \left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$.

The number of distinct real values of k for which the equation AX = 0 has infinitely many solutions is _______.
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12