1
GATE ECE 2018
MCQ (Single Correct Answer)
+2
-0.67
A curve passes through the point ($$x$$ = 1, $$y$$ = 0) and satisfies the differential equation

$${{dy} \over {dx}} = {{{x^2} + {y^2}} \over {2y}} + {y \over x}$$. The equation that describes the curve is
A
$$\ln \left( {1 + {{{y^2}} \over {{x^2}}}} \right) = x - 1$$
B
$${1 \over 2}\ln \left( {1 + {{{y^2}} \over {{x^2}}}} \right) = x - 1$$
C
$${1 \over 2}\ln \left( {1 + {y \over x}} \right) = x - 1$$
D
$$\ln \left( {1 + {y \over x}} \right) = x - 1$$
2
GATE ECE 2018
Numerical
+2
-0.67
The contour C given below is on the complex plane $$z = x + jy$$, where $$j = \sqrt { - 1} $$. GATE ECE 2018 Engineering Mathematics - Complex Variable Question 5 English The value of the integral $${1 \over {\pi j}}\oint\limits_C {{{dz} \over {{z^2} - 1}}} $$ is ________________.
Your input ____
3
GATE ECE 2018
Numerical
+1
-0.33
Let X1 , X2 , X3 and X4 be independent normal random variables with zero mean and unit variance. The probability that X4 is the smallest among the four is _______.
Your input ____
4
GATE ECE 2018
Numerical
+1
-0.33
Taylor series expansion of $$f\left( x \right) = \int\limits_0^x {{e^{ - \left( {{{{t^2}} \over 2}} \right)}}} dt$$ around 𝑥 = 0 has the form

f(x) = $${a_0} + {a_1}x + {a_2}{x^2} + ...$$

The coefficient $${a_2}$$ (correct to two decimal places) is equal to _______.
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12