1
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The solution of the differential equation $${{h\left( {t + 1} \right)} \over {h\left( t \right)}}\,\,\,\,\,{{{d^2}y} \over {d{t^{ \to 2}}}} + {{2\,dy} \over {dt}} + y\, = \,0$$ with $$\,y\left( 0 \right)\, = \,y'\left( 0 \right)\, = \,1$$ is
A
$$\left( {2 - t} \right){e^t}$$
B
$$\left( {1 + 2t} \right){e^{ - t}}$$
C
$$\left( {2 + t} \right){e^{ - t}}$$
D
$$\left( {1 - 2t} \right){e^t}$$
2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Two sequences [a, b, c ] and [A, B, C ] are related as,
$$\left[ {\matrix{ A \cr B \cr C \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } {\mkern 1mu} \,\matrix{ 1 \cr {W_3^{ - 1}} \cr {W_3^{ - 2}} \cr } \,\matrix{ 1 \cr {W_3^{ - 2}} \cr {W_3^{ - 4}} \cr } } \right]{\mkern 1mu} \left[ {\matrix{ a \cr b \cr c \cr } } \right]$$ Where
$${W_3}$$ = $${e^{j{{2\pi } \over 3}}}$$ .
if another sequence $$\left[ {p,\,q,\,r} \right]$$ is derived as,
$$\left[ {\matrix{ p \cr q \cr r \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } \,\,\matrix{ 1 \cr {W_3^1} \cr {W_3^2} \cr } \,\matrix{ 1 \cr {W_3^2} \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ 1 \cr 0 \cr 0 \cr } \,\matrix{ 0 \cr {W_3^2} \cr {0\,} \cr } \,\matrix{ 0 \cr 0 \cr {W_3^4} \cr } } \right]\,\left[ {\matrix{ {A/3} \cr {B/3} \cr {C/3} \cr } } \right]$$ ,
Then the relationship between the sequences $$\left[ {p,\,q,\,r} \right]$$ and $$\left[ {a,\,b,\,c} \right]$$ is
A
$$\left[ {p,\,q,\,r} \right]$$= $$\left[ {b,\,a,\,c} \right]$$
B
$$\left[ {p,\,q,\,r} \right]$$ = $$\left[ {b,\,c,\,a} \right]$$
C
$$\left[ {p,\,q,\,r} \right]$$= $$\left[ {c,\,a,\,b} \right]$$
D
$$\left[ {p,\,q,\,r} \right]$$ = $$\left[ {c,\,b,\,a} \right]$$
3
GATE ECE 2015 Set 1
Numerical
+2
-0
Consider two real sequences with time- origin marked by the bold value, $${x_1}\left[ n \right] = \left\{ {1,\,2,\,3,\,0} \right\}\,,\,{x_2}\left[ n \right] = \left\{ {1,\,3,\,2,\,1} \right\}$$ Let $${X_1}(k)$$ and $${X_2}(k)$$ be 4-point DFTs of $${x_1}\left[ n \right]$$ and $${x_2}\left[ n \right]$$, respectively. Another sequence $${X_3}(n)$$ is derived by taking 4-ponit inverse DFT of $${X_3}(k)$$= $${X_1}(k)$$$${X_2}(k)$$. The value of $${x_3}\left[ 2 \right]$$
Your input ____
4
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The pole-zero diagram of a causal and stable discrete-time system is shown in the figure. The zero at the origin has multiplicity 4. The impulse response of the system is ℎ[n]. If ℎ[0] =1, we can conclude. GATE ECE 2015 Set 1 Signals and Systems - Discrete Time Signal Z Transform Question 20 English
A
h (n) is real for all n.
B
h (n) is purely imaginary for all n.
C
h (n) is real for only even n.
D
h (n) is purely imaginary for only odd n ݊
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12