1
GATE ECE 2014 Set 1
Numerical
+1
-0
Consider the matrix $${J_6} = \left[ {\matrix{ 0 & 0 & 0 & 0 & 0 & 1 \cr 0 & 0 & 0 & 0 & 1 & 0 \cr 0 & 0 & 0 & 1 & 0 & 0 \cr 0 & 0 & 1 & 0 & 0 & 0 \cr 0 & 1 & 0 & 0 & 0 & 0 \cr 1 & 0 & 0 & 0 & 0 & 0 \cr } } \right]$$

Which is obtained by reversing the order of the columns of the identity matrix $${{\rm I}_6}$$. Let $$P = {{\rm I}_6} + \alpha \,\,{J_6},$$ where $$\alpha $$ is a non $$-$$ negative real number. The value of $$\alpha $$ for which det $$(P)=0$$ is _______.

Your input ____
2
GATE ECE 2014 Set 1
Numerical
+1
-0
$$A$$ real $$\left( {4\,\, \times \,\,4} \right)$$ matrix $$A$$ satisfies the equation $${A^2} = {\rm I},$$ where $${\rm I}$$ is the $$\left( {4\,\, \times \,\,4} \right)$$ identity matrix. The positive eigen value of $$A$$ is _______.
Your input ____
3
GATE ECE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The Taylor series expansion of $$3$$ $$sin$$ $$x$$ $$+2cos$$ $$x$$ is
A
$$2 + 3x - {x^2} - {{{x^3}} \over 2} + - - - $$
B
$$2 - 3x + {x^2} - {{{x^3}} \over 2} + - - - $$
C
$$2 + 3x + {x^2} + {{{x^3}} \over 2} + - - - $$
D
$$2 - 3x - {x^2} + {{{x^3}} \over 2} + - - - $$
4
GATE ECE 2014 Set 1
Numerical
+2
-0
The volume under the surface $$z\left( {x,y} \right) = x + y$$ and above the triangle in the $$xy$$ plane defined by $$\left\{ {0 \le y \le x} \right.$$ and $$\,\left. {0 \le x \le 12} \right\}$$ is _________.
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12