1
GATE ECE 2014 Set 1
Numerical
+1
-0
Consider two real valued signals, $$x\left( t \right)$$ band - limited to $$\,\left[ { - 500Hz,\,\,500Hz} \right]$$ and $$y\left( t \right)$$ band - limited to $$\,\left[ { - 1\,\,kHz,\,\,1kHz} \right].$$ For $$z\left( t \right)\,\, = \,x\left( t \right).y\left( t \right),$$ the Nyquist sampling frequency $$\left( {in\,\,kHz} \right)$$ is________.
Your input ____
2
GATE ECE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
A discrete - time signal x[n] = $${\rm{sin(}}\,{\pi ^2}n)$$, n being an integer is
A
periodic with period $$\pi$$
B
periodic with period $$\,{\pi ^2}$$
C
periodic with period is $$\pi /2$$
D
not periodic.
3
GATE ECE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let x $$\left[ n\right]$$= $${\left( { - {1 \over 9}} \right)^n}\,u(n) - {\left( { - {1 \over 3}} \right)^n}u( - n - 1).$$ The region of Convergence (ROC) of the z-tansform of x$$\left[ n \right]$$
A
is $$\left| z \right| > {1 \over 9}$$
B
is $$\left| z \right| < {1 \over 3}$$
C
is $${1 \over 3} > \left| z \right| > {1 \over 9}$$
D
does not exist.
4
GATE ECE 2014 Set 1
Numerical
+1
-0
A continuous, linear time - invariant fiilter has an impulse response h(t) described by $$h\left( t \right) = \left\{ {\matrix{ {3\,for\,0 \le t \le 3} \cr {0\,otherwise} \cr } } \right.$$

Whjen a constant input of value 5 is applied to this filter, the steady state output is ____.

Your input ____
EXAM MAP