1
GATE ECE 1996
Subjective
+5
-0
The open circuit impedance matrix $${Z_{OC}}$$ of a three-terminal two-port network with A as the input terminal, B as the output terminal, and C as the common terminal, is given as $$$\left[ {{Z_{OC}}} \right] = \left[ {\matrix{ 2 & 5 \cr 3 & 7 \cr } } \right]$$$

Write down the short circuit admittance matrix $${{Y_{SC}}}$$ of the network viewed as a two-port network, but now taking B as the input terminal, C as the output terminal and A as the common terminal.

2
GATE ECE 1996
MCQ (Single Correct Answer)
+2
-0.6

The voltage VC1, VC2 and VC3 across the capacitors in the circuit in Fig., under steady state, are respectively

GATE ECE 1996 Network Theory - Transient Response Question 36 English
A
80 V, 32 V, 48 V
B
80 V, 48 V, 32 V
C
20 V, 8V, 12 V
D
20 V, 12 V, 8 V
3
GATE ECE 1996
MCQ (Single Correct Answer)
+1
-0.3
The number of independent loops for a network with n nodes and b branches is
A
n -1
B
b - n
C
b - n + 1
D
independent of the number of nodes
4
GATE ECE 1996
Subjective
+5
-0
Refer to the circuit shown in Fig. GATE ECE 1996 Network Theory - State Equations For Networks Question 3 English Choosing the voltage vC(t) across capacitor, and the current iL(t) through the inductor as state variable,i.e., $$$\left[\mathrm x\left(\mathrm t\right)\right]\;=\;\begin{bmatrix}{\mathrm v}_\mathrm C\left(\mathrm t\right)\\{\mathrm i}_\mathrm L\left(\mathrm t\right)\end{bmatrix}$$$ Write the state equation in the form $$\frac{\operatorname d\left[x\left(t\right)\right]}{\operatorname dt}\;=\;\left[A\right]\left[x\left(t\right)\right]\;+\;\left[B\right]\left[u\left(t\right)\right]$$ and find [A], [B] and [u(t)].
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12