1
NEET 2022 Phase 2
+4
-1

The ratio of the magnitude of the magnetic field and electric field intensity of a plane electromagnetic wave in free space of permeability $${\mu _0}$$ and permittivity $${\varepsilon _0}$$ is (Given that c - velocity) of light in free space

A
$${{\sqrt {{\mu _0}{\varepsilon _0}} } \over c}$$
B
c
C
$${1 \over c}$$
D
$${c \over {\sqrt {{\mu _0}{\varepsilon _0}} }}$$
2
NEET 2022 Phase 1
+4
-1

Match List - I with List - II

List - I
(Electromagnetic waves)
List - II
(Wavelength)
(a) AM radio waves (i) $${10^{ - 10}}$$ m
(b) Microwaves (ii) $${10^2}$$ m
(c) Infrared radiations (iii) $${10^{ - 2}}$$ m
(d) X-rays (iv) $${10^{ - 4}}$$ m

Choose the correct answer from the options given below

A
(a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)
B
(a) - (iii), (b) - (ii), (c) - (i), (d) - (iv)
C
(a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)
D
(a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)
3
NEET 2022 Phase 1
+4
-1

When light propagates through a material medium of relative permittivity $$\varepsilon$$r and relative permeability $$\mu$$r, the velocity of light, v is given by (c-velocity of light in vacuum)

A
v = c
B
$$v = \sqrt {{{{\mu _r}} \over {{\varepsilon _r}}}}$$
C
$$v = \sqrt {{{{\varepsilon _r}} \over {{\mu _r}}}}$$
D
$$v = {c \over {\sqrt {{\varepsilon _r}{\mu _r}} }}$$
4
NEET 2021
+4
-1
For a plane electromagnetic wave propagating in x-direction, which one of the following combination gives the correct possible directions for electric field (E) and magnetic field (B) respectively?
A
$$- \widehat j + \widehat k, - \widehat j + \widehat k$$
B
$$\widehat j + \widehat k, \widehat j + \widehat k$$
C
$$- \widehat j + \widehat k, - \widehat j - \widehat k$$
D
$$\widehat j + \widehat k, - \widehat j - \widehat k$$
EXAM MAP
Medical
NEETAIIMS