1
NEET 2024 (Re-Examination)
+4
-1

If the ratio of relative permeability and relative permittivity of a uniform medium is $$1: 4$$. The ratio of the magnitudes of electric field intensity $$(E)$$ to the magnetic field intensity $$(H)$$ of an EM wave propagating in that medium is (Given that $$\sqrt{\frac{\mu_0}{\varepsilon_0}}=120 \pi$$):

A
$$30 \pi: 1$$
B
$$1: 120 \pi$$
C
$$60 \pi: 1$$
D
$$120 \pi: 1$$
2
NEET 2024
+4
-1

The property which is not of an electromagnetic wave travelling in free space is that:

A
They are transverse in nature
B
The energy density in electric field is equal to energy density in magnetic field
C
They travel with a speed equal to $$\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$
D
They originate from charges moving with uniform speed
3
NEET 2023
+4
-1

In a plane electromagnetic wave travelling in free space, the electric field component oscillates sinusoidally at a frequency of $$2.0 \times 10^{10} \mathrm{~Hz}$$ and amplitude $$48 ~\mathrm{Vm}^{-1}$$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $$=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$$ )

A
$$1.6 \times 10^{-8} \mathrm{~T}$$
B
$$1.6 \times 10^{-7} \mathrm{~T}$$
C
$$1.6 \times 10^{-6} \mathrm{~T}$$
D
$$1.6 \times 10^{-9} \mathrm{~T}$$
4
NEET 2022 Phase 2
+4
-1

The magnetic field of a plane electromagnetic wave is given by $$\overrightarrow B = 3 \times {10^{ - 8}}\cos (1.6 \times {10^3}x + 48 \times {10^{10}}t)\widehat j$$, then the associated electric field will be :

A
$$9\cos (1.6 \times {10^3}x + 48 \times {10^{10}}t)\widehat k$$ V/m
B
$$3 \times {10^{ - 8}}\cos (1.6 \times {10^3}x + 48 \times {10^{10}}t)\widehat i$$ V/m
C
$$3 \times {10^{ - 8}}\sin (1.6 \times {10^3}x + 48 \times {10^{10}}t)\widehat i$$ V/m
D
$$9\sin (1.6 \times {10^3}x - 48 \times {10^{10}}t)\widehat k$$ V/m
EXAM MAP
Medical
NEET