1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equations of two ellipses are $\frac{x^2}{4}+\frac{y^2}{2}=1$ and $\frac{x^2}{36}+\frac{y^2}{\mathrm{~b}^2}=1$. If the product of their eccentricities is $\frac{\sqrt{2}}{3}$, then the product of the length of the major axis and minor axis of the second ellipse is

A
$12 \sqrt{5}$
B
720
C
$6 \sqrt{20}$
D
$48 \sqrt{5}$
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The eccentricity of the ellipse $9 x^2+5 y^2-30 y=0$ is

A
$\frac{1}{3}$
B
$\frac{2}{3}$
C
$\frac{3}{7}$
D
$\frac{4}{9}$
3
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
An ellipse has OB as semi-minor axis, S and $\mathrm{S}^{\prime}$ are foci and angle SBS' is a right angle. Then the eccentricity of the ellipse is
A
$\frac{1}{2}$
B
$\frac{1}{\sqrt{2}}$
C
$\sqrt{2}$
D
$\frac{1}{3}$
4
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

A rectangle of maximum area is inscribed in an ellipse $$\frac{x^2}{25}+\frac{y^2}{16}=1$$, then its dimensions are

A
$$4 \sqrt{2}, 6 \sqrt{2}$$
B
$$\sqrt{2}, 5 \sqrt{2}$$
C
$$4 \sqrt{2}, 5 \sqrt{2}$$
D
$$4 \sqrt{2}, \sqrt{2}$$
MHT CET Subjects
EXAM MAP