1
GATE CSE 2025 Set 2
Numerical
+2
-0

The unit interval $(0,1)$ is divided at a point chosen uniformly distributed over $(0,1)$ in $R$ into two disjoint subintervals.

The expected length of the subinterval that contains 0.4 is _________ . (rounded off to two decimal places)

Your input ____
2
GATE CSE 2025 Set 1
Numerical
+2
-0

Suppose a 5-bit message is transmitted from a source to a destination through a noisy channel. The probability that a bit of the message gets flipped during transmission is 0.01. Flipping of each bit is independent of one another. The probability that the message is delivered error-free to the destination is __________ ( (Rounded off to three decimal places)

Your input ____
3
GATE CSE 2025 Set 1
Numerical
+2
-0

Consider a probability distribution given by the density function $P(x)$.

$$P(x)=\left\{\begin{array}{cc} C x^2, & \text { for } 1 \leq x \leq 4 \\ 0, & \text { for } x<1 \text { or } x>4 \end{array}\right.$$

The probability that $x$ lies between 2 and 3, i.e., $P(2 \leq x \leq 3)$ is _________ (Rounded off to three decimal places)

Your input ____
4
GATE CSE 2024 Set 2
MCQ (Single Correct Answer)
+2
-0.66

Let $ x $ and $ y $ be random variables, not necessarily independent, that take real values in the interval $[0,1]$. Let $ z = xy $ and let the mean values of $ x, y, z $ be $ \bar{x} , \bar{y} , \bar{z} $, respectively. Which one of the following statements is TRUE?

A

$ \bar{z} = \bar{x} \bar{y} $

B

$ \bar{z} \leq \bar{x} \bar{y} $

C

$ \bar{z} \geq \bar{x} \bar{y} $

D

$ \bar{z} \leq \bar{x} $

GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP