1
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Let $${x_n}$$ denote the number of binary strings of length $$n$$ that contains no consecutive $$0s$$.

Which of the following recurrences does $${x_n}$$ satisfy?

A
$${x_n} = 2{x_{n - 1}}$$
B
$${x_n} = {x_{\left[ {n/2} \right]}} + 1$$
C
$${x_n} = {x_{\left[ {n/2} \right]}} + n$$
D
$${x_n} = {x_{n - 1}} + {x_{n - 2}}$$
2
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
When $$n = {2^{2k}}$$ for some $$k \ge 0$$, the recurrence relation $$$T\left( n \right) = \sqrt 2 T\left( {n/2} \right) + \sqrt n ,\,\,T\left( 1 \right) = 1$$$
evaluates to
A
$$\sqrt n \left( {\log \,n + 1} \right)$$
B
$$\sqrt n \,\log \,n$$
C
$$\sqrt n \,\log \,\sqrt n $$
D
$$n\,\log \sqrt n $$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
In how many ways can $$b$$ blue balls and $$r$$ red balls be distributed in $$n$$ distinct boxes?
A
$${{\left( {n + b - 1} \right)!\left( {n + r - 1} \right)!} \over {\left( {n - 1} \right)!b!\left( {n - 1} \right)!r!}}$$
B
$${{\left( {n + \left( {b + r} \right) - 1} \right)!} \over {\left( {n - 1} \right)!\left( {n - 1} \right)!\left( {b + r} \right)!}}$$
C
$${{n!} \over {b!r!}}$$
D
$${{\left( {n + \left( {b + r} \right) - 1} \right)!} \over {n!\left( {b + r - 1} \right)!}}$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
The exponent of $$11$$ in the prime factorization of $$300!$$ is
A
$$27$$
B
$$28$$
C
$$29$$
D
$$30$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12