1
GATE CSE 2006
+1
-0.3
Let $$X,. Y, Z$$ be sets of sizes $$x, y$$ and $$z$$ respectively. Let $$W = X x Y$$ and $$E$$ be the set of all subjects of $$W$$. The number of functions from $$Z$$ to $$E$$ is
A
$${2^{{2^{xy}}}}$$
B
$$2 \times {2^{xy}}$$
C
$${2^{{2^{x + y}}}}$$
D
$${2^{xyz}}$$
2
GATE CSE 2006
+1
-0.3
The set $$\left\{ {1,\,\,2,\,\,3,\,\,5,\,\,7,\,\,8,\,\,9} \right\}$$ under multiplication modulo 10 is not a group. Given below are four plausible reasons.

Which one of them is false?

A
It is not closed
B
2 does not have an inverse
C
3 does not have an inverse
D
8 does not have an inverse
3
GATE CSE 2006
+1
-0.3
For the set $$N$$ of natural numbers and a binary operation $$f:N \times N \to N$$, an element $$z \in N$$ is called an identity for $$f$$ if $$f\left( {a,z} \right) = a = f\left( {z,a} \right)$$ for all $$a \in N$$. Which of the following binary operations have an identify?
$${\rm I}$$) $$\,\,\,\,\,\,f\left( {x,y} \right) = x + y - 3$$
$${\rm I}{\rm I}$$ $$\,\,\,\,\,\,f\left( {x,y} \right) = {\mkern 1mu} \max \left( {x,y} \right)$$
$${\rm I}{\rm I}{\rm I}$$$$\,\,\,\,\,f\left( {x,y} \right) = \,{x^y}$$
A
$${\rm I}$$ and $${\rm I}$$$${\rm I}$$ only
B
$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$ only
C
$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$ only
D
None of them
4
GATE CSE 2005
+1
-0.3
Let $$A$$, $$B$$ and $$C$$ be non-empty sets and let $$X = (A - B) - C$$ and $$Y = (A - C) - (B - C)$$

Which one of the following is TRUE?

A
$$X = Y$$
B
$$X \subset Y$$
C
$$Y \subset X$$
D
None of these
GATE CSE Subjects
EXAM MAP
Medical
NEETAIIMS