1
GATE CSE 2000
Subjective
+5
-0
Let $$S = \left\{ {0,1,2,3,4,5,6,7} \right\}$$ and $$\otimes$$ denote multiplication modulo $$8$$, that is, $$x \otimes y = \left( {xy} \right)$$ mod $$8$$

(a) Prove that $$\left( {0,\,1,\, \otimes } \right)$$ is not a group.
(b) Write $$3$$ distinct groups $$\left( {G,\,\, \otimes } \right)$$ where $$G \subset s$$ and $$G$$ has $$2$$ $$\,\,\,\,\,\,$$elements.

2
GATE CSE 1995
Subjective
+5
-0
Let $${G_1}$$ and $${G_2}$$ be subgroups of a group $$G$$.
(a) Show that $${G_1}\, \cap \,{G_2}$$ is also a subgroup of $$G$$.
(b) $${\rm I}$$s $${G_1}\, \cup \,{G_2}$$ always a subgroup of $$G$$?
3
GATE CSE 1992
Subjective
+5
-0
(a) If G is a group of even order, then
show that there exists an element $$a \ne e$$,
the identifier $$g$$, such that
$${a^2} = e$$

(b) Consider the set of integers $$\left\{ {1,2,3,4,6,8,12,24} \right\}$$ together with the two binary operations LCM (lowest common multiple) and GCD (greatest common divisor). Which of the following algebraic structures does this represent?
i) Group ii) ring
iii) field iv) lattice

GATE CSE Subjects
EXAM MAP
Medical
NEET