1
GATE CSE 2002
Subjective
+5
-0
(a) $$S = \left\{ { < 1,2 > ,\, < 2,1 > } \right\}$$ is binary relation on set $$A = \left\{ {1,2,3} \right\}$$. Is it irreflexive?
Add the minimumnumber of ordered pairs to $$S$$ to make it an $$\,\,\,\,\,$$equivalence relation. Give the modified $$S$$.

(b) Let $$S = \left\{ {a,\,\,b} \right\}\,\,\,\,$$ and let ▢ $$S$$ be the power set of $$S$$. Consider the binary relation $$'\underline \subset $$ (set inclusion)' on ▢ $$S$$. Draw the Hasse diagram corresponding to the lattice (▢$$(S)$$, $$\underline \subset $$)

2
GATE CSE 2000
Subjective
+5
-0
A multiset is an unordered collection of elements where elements may repeat ay number of times. The size of a multiset is the number of elements in it counting repetitions.

(a) what is the number of multisets of size 4 that can be constructed from n distinct elements so that at least one element occurs exactly twice?
(b) How many multisets can be constructed from n distinct elements?

3
GATE CSE 2000
Subjective
+5
-0
Let $$S = \left\{ {0,1,2,3,4,5,6,7} \right\}$$ and $$ \otimes $$ denote multiplication modulo $$8$$, that is, $$x \otimes y = \left( {xy} \right)$$ mod $$8$$

(a) Prove that $$\left( {0,\,1,\, \otimes } \right)$$ is not a group.
(b) Write $$3$$ distinct groups $$\left( {G,\,\, \otimes } \right)$$ where $$G \subset s$$ and $$G$$ has $$2$$ $$\,\,\,\,\,\,$$elements.

4
GATE CSE 1995
Subjective
+5
-0
Let $${G_1}$$ and $${G_2}$$ be subgroups of a group $$G$$.
(a) Show that $${G_1}\, \cap \,{G_2}$$ is also a subgroup of $$G$$.
(b) $${\rm I}$$s $${G_1}\, \cup \,{G_2}$$ always a subgroup of $$G$$?
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12