1
GATE CSE 2017 Set 2
+2
-0.6
For any discrete random variable $$X,$$ with probability mass function $$P\left( {X = j} \right) = {p_j},$$
$${p_j}\,\, \ge 0,\,j \in \left\{ {0,..........,\,\,\,N} \right\},$$ and $$\,\,\sum\limits_{j = 0}^N {{p_j} = 1,\,\,}$$ define the polynomial function $${g_x}\left( z \right) = \sum\limits_{j = 0}^N {{p_j}{z^j}} .$$ For a certain discrete random variable $$Y$$, there exists a scalar $$\beta$$ $$\in \left[ {0,1} \right]$$ such that $${g_y}\left( z \right) = {\left\{ {1 - \beta + \left. {\beta z} \right)} \right.^N}.$$ The expectation of $$Y$$ is
A
$$N\beta \left( {1 - \beta } \right)$$
B
$$N\beta \left( {1 - \beta } \right)$$
C
$$N\left( {1 - \beta } \right)$$
D
Not expressible in terms of $$N$$ and $$\beta$$ alone
2
GATE CSE 2016 Set 2
Numerical
+2
-0
Suppose that a shop has an equal number of LED bulbs of two different types. The probability of an LED bulb lasting more than $$100$$ hours given that it is of Type $$1$$ is $$0.7,$$ and given that it is of Type $$2$$ is $$0.4.$$ The probability that an LED bulb chosen uniformly at random lasts more than $$100$$ hours is _________.
3
GATE CSE 2016 Set 1
Numerical
+2
-0
Consider the following experiment.
Step1: Flip a fair coin twice.
Step2: If the outcomes are (TAILS, HEADS) then output $$Y$$ and stop.
Step3: If the outcomes are either (HEADS, HEADS) or (HEADS, TAILS), then output $$N$$ and stop.
Step4: If the outcomes are (TAILS, TAILS), then go to Step 1.

The probability that the output of the experiment is $$Y$$ is (up to two decimal places) _____________.

4
GATE CSE 2015 Set 1
+2
-0.6
Given Set $$\,\,\,A = \left\{ {2,3,4,5} \right\}\,\,\,$$ and Set $$\,\,\,B = \left\{ {11,12,13,14,15} \right\},\,\,\,$$ two numbers are randomly selected, one from each set. What is the probability that the sum of the two numbers equal $$16?$$
A
$$0.20$$
B
$$0.25$$
C
$$0.30$$
D
$$0.33$$
GATE CSE Subjects
EXAM MAP
Medical
NEET