1
AIPMT 2010 Mains
MCQ (Single Correct Answer)
+4
-1
The reaction,
2A(g) + B(g) $$\rightleftharpoons$$ 3C(g) + D(g)
is begun with the concentrations of A and B both at an initial value of 1.00 M. When equilibrium is reached, the concentration of D is measuread and found to be 0.25 M. The value for the equilibrium constant for this reaction is given by the expression
A
[(0.75)3 (0.25)] $$ \div $$ [(1.00)2 (1.00)]
B
[(0.75)3 (0.25)] $$ \div $$ [(0.50)2 (0.75)]
C
[(0.75)3 (0.25)] $$ \div $$ [(0.50)2 (0.25)]
D
[(0.75)3 (0.25)] $$ \div $$ [(0.75)2 (0.25)]
2
AIPMT 2010 Prelims
MCQ (Single Correct Answer)
+4
-1
In which of the following equilibrium Kc and Kp are not equal?
A
2NO(g) $$\rightleftharpoons$$ N2(g) + O2(g)
B
SO2(g) + NO2(g) $$\rightleftharpoons$$ SO3(g) + NO(g)
C
H2(g) + I2(g) $$\rightleftharpoons$$ 2HI(g)
D
2C(s) + O2(g) $$\rightleftharpoons$$ 2CO2(g)
3
AIPMT 2009
MCQ (Single Correct Answer)
+4
-1
The dissociation constants for acetic acid and HCN at 25oC are 1.5 $$ \times $$ 10$$-$$5 and 4.5 $$ \times $$ 10$$-$$10 respectively. The equilibrium constant for the equilibrium
CN$$-$$ + CH3COOH $$\rightleftharpoons$$ HCN + CH3COO$$-$$ would be
A
3.0 $$ \times $$ 10$$-$$5
B
3.0 $$ \times $$ 10$$-$$4
C
3.0 $$ \times $$ 104
D
3.0 $$ \times $$ 105
4
AIPMT 2008
MCQ (Single Correct Answer)
+4
-1
The value of equilibrium constant of the reaction
HI(g) $$\rightleftharpoons$$ $${1 \over 2}$$H2(g) + $${1 \over 2}$$I2(g)
is 8.0. The The equilibrium constant of the reaction
H2(g) + I2(g) $$\rightleftharpoons$$ 2HI(g) will be
A
16
B
1/8
C
1/16
D
1/64
NEET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12