For the reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})$, the backward reaction rate constant is higher than the forward reaction rate constant by a factor of 2500 , at 1000 K.
[Given : $\mathrm{R}=0.0831 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ ]
$K_p$ for the reaction at $1000 K$ is
Higher yield of NO in $\mathrm{N}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ can be obtained at $\left[\Delta \mathrm{H}\right.$ of the reaction $\left.=+180.7 \mathrm{~kJ} \mathrm{~mol}^{-1}\right]$
A. Higher temperature
B. Lower temperature
C. Higher concentration of $\mathrm{N}_2$
D. Higher concentration of $\mathrm{O}_2$
Choose the correct answer from the options given below :
At a given temperature and pressure, the equilibrium constant values for the equilibria are given below:
$$\begin{aligned} & 3 \mathrm{~A}_2+\mathrm{B}_2 \rightleftharpoons 2 \mathrm{~A}_3 \mathrm{~B}, \mathrm{~K}_1 \\ & \mathrm{~A}_3 \mathrm{~B} \rightleftharpoons \frac{3}{2} \mathrm{~A}_2+\frac{1}{2} \mathrm{~B}_2, \mathrm{~K}_2 \end{aligned}$$
The relation between $$\mathrm{K}_1$$ and $$\mathrm{K}_2$$ is :
For the reaction in equilibrium
$$\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_3(\mathrm{~g}), \Delta \mathrm{H}=-\mathrm{Q}$$
Reaction is favoured in forward direction by: