1
AIPMT 2008
+4
-1
The rate constants k1 and k2 for two different reactions are 1016 $$\cdot$$ e$$-$$2000/T and 1015 $$\cdot$$ e$$-$$1000/T, respectively.
The temperature at which k1 = k2 is
A
2000 K
B
$${{1000} \over {2.303}}K$$
C
1000 K
D
$${{2000} \over {2.303}}K$$
2
AIPMT 2008
+4
-1
The bromination of acetone that occurs in acid solution is represented by this equation.
CH3COCH3(aq) + Br2(aq)  $$\to$$
CH3COCH2Br(aq) + H+(aq) + Br$$-$$(aq)
These kinetic data were obtained for given reaction concentrations.
Initial concentrations, M
[CH3COCH3 [Br2] [H+]
0.30 0.05 0.05
0.30 0.10 0.05
0.30 0.10 0.10
0.40 0.05 0.20

Initial rate, disappearance of Br2, Ms$$-$$1
5.7$$\times$$10$$-$$5
5.7$$\times$$10$$-$$5
1.2$$\times$$10$$-$$4
3.1$$\times$$10$$-$$4

Based on these data, the rate equation is
A
Rate = k[CH3COCH3][Br2][H+]2
B
Rate = k[CH3COCH3][Br2][H+]
C
Rate = k[CH3COCH3][H+]
D
Rate = k[CH3COCH3][Br2]
3
AIPMT 2007
+4
-1
If 60% of a first order reaction was completed in 60 minutes, 50% of the same reaction would be completed in approximately
(log 4 = 0.60, log 5 = 0.69)
A
45 minutes
B
60 minutes
C
40 minutes
D
50 minutes
4
AIPMT 2007
+4
-1
In a first-order reaction A $$\to$$ B, if k is rate constant and initial concentration of the reactant A is 0.5 M, then the half-life is
A
$${{\log 2} \over k}$$
B
$${{\log 2} \over {k\sqrt {0.5} }}$$
C
$${{\ln 2} \over k}$$
D
$${{0.693} \over {0.5k}}$$
NEET Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Biology
Botany
Zoology
EXAM MAP
Joint Entrance Examination