NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

AIPMT 2010 Prelims

MCQ (Single Correct Answer)
For the reaction N2O5(g) $$ \to $$  2NO2(g) + 1/2O2(g)
the value of rate of disappearance of N2O5 is given as 6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1. The rate of formation of NO2 and O2 is given respectively as
A
6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1 and
6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1
B
1.25 $$ \times $$ 10$$-$$2 mol L$$-$$1 s$$-$$1 and
3.125 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1
C
6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1 and
3.125 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1
D
1.25 $$ \times $$ 10$$-$$2 mol L$$-$$1 s$$-$$1 and
6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1

Explanation

N2O5(g) $$ \to $$  2NO2(g) + 1/2O2(g)

$$ - {{d\left[ {{N_2}{O_5}} \right]} \over {dt}} = {1 \over 2}{{d\left[ {N{O_2}} \right]} \over {dt}} = 2{{d\left[ {{O_2}} \right]} \over {dt}}$$

$$ \Rightarrow $$ $${{d\left[ {N{O_2}} \right]} \over {dt}} = - 2{{d\left[ {{N_2}{O_5}} \right]} \over {dt}}$$

= 2 $$ \times $$ 6.25 $$ \times $$ 10 mol l-1 sec-1

= 1.25 $$ \times $$ 10$$-$$2 mol L$$-$$1 s$$-$$1

$${{d\left[ {{O_2}} \right]} \over {dt}} = - {1 \over 2}{{d\left[ {{N_2}{O_5}} \right]} \over {dt}}$$

= $${{6.25 \times {{10}^{ - 3}}} \over 2}$$

= 3.125 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1
2

AIPMT 2009

MCQ (Single Correct Answer)
Half-life period of a first order reaction is 1386 seconds. The specific rate constant of the reaction is
A
0.5 $$ \times $$ 10$$-$$2 s$$-$$1
B
0.5 $$ \times $$ 10$$-$$3 s$$-$$1
C
5.0 $$ \times $$ 10$$-$$2 s$$-$$1
D
5.0 $$ \times $$ 10$$-$$3 s$$-$$1.

Explanation

Specific rate constant

k = $${{0.693} \over {{t_{1/2}}}}$$

= $${{0.693} \over {1386}}$$

= 0.5 $$ \times $$ 10-3 sec-1
3

AIPMT 2009

MCQ (Single Correct Answer)
For the reaction A + B $$ \to $$ products, it is observed that

(i)  on doubling the initial concentration of A only, the rate of reaction is also doubled and
(ii)  on doubling the initial concentration of both A and B, there is a change by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by
A
rate = k[A]2 [B]2
B
rate = k[A] [B]2
C
rate = k[A] [B]
D
rate = k[A]2 [B]

Explanation

R = k[A]m[B]n ... (i)

2R = k[2A]m[B]n ... (ii)

8R = k[2A]m[2B]n ... (iii)

from (i), (ii) and (iii), m = 1, n = 2

So, rate = k[A][B]2
4

AIPMT 2009

MCQ (Single Correct Answer)
In the reaction,
BrO$$_{3(aq)}^ - $$ + 5Br$$_{(aq)}^ - $$ + 6H+ $$ \to $$ 3Br2(l) + 3H2O(l).
The rate of appearance of bromine (Br2) is related to rate of disappearance of bromide ions as
A
$${{d\left[ {B{r_2}} \right]} \over {dt}} = - {5 \over 3}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$
B
$${{d\left[ {B{r_2}} \right]} \over {dt}} = {5 \over 3}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$
C
$${{d\left[ {B{r_2}} \right]} \over {dt}} = {3 \over 5}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$
D
$${{d\left[ {B{r_2}} \right]} \over {dt}} = - {3 \over 5}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$

Explanation

Rate = $${1 \over 3}{{d\left[ {B{r_2}} \right]} \over {dt}} = - {1 \over 5}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$

$$ \therefore $$ $${{d\left[ {B{r_2}} \right]} \over {dt}} = - {3 \over 5}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12