1
MCQ (Single Correct Answer)

AIPMT 2010 Prelims

For the reaction N2O5(g) $$ \to $$  2NO2(g) + 1/2O2(g)
the value of rate of disappearance of N2O5 is given as 6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1. The rate of formation of NO2 and O2 is given respectively as
A
6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1 and
6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1
B
1.25 $$ \times $$ 10$$-$$2 mol L$$-$$1 s$$-$$1 and
3.125 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1
C
6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1 and
3.125 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1
D
1.25 $$ \times $$ 10$$-$$2 mol L$$-$$1 s$$-$$1 and
6.25 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1

Explanation

N2O5(g) $$ \to $$  2NO2(g) + 1/2O2(g)

$$ - {{d\left[ {{N_2}{O_5}} \right]} \over {dt}} = {1 \over 2}{{d\left[ {N{O_2}} \right]} \over {dt}} = 2{{d\left[ {{O_2}} \right]} \over {dt}}$$

$$ \Rightarrow $$ $${{d\left[ {N{O_2}} \right]} \over {dt}} = - 2{{d\left[ {{N_2}{O_5}} \right]} \over {dt}}$$

= 2 $$ \times $$ 6.25 $$ \times $$ 10 mol l-1 sec-1

= 1.25 $$ \times $$ 10$$-$$2 mol L$$-$$1 s$$-$$1

$${{d\left[ {{O_2}} \right]} \over {dt}} = - {1 \over 2}{{d\left[ {{N_2}{O_5}} \right]} \over {dt}}$$

= $${{6.25 \times {{10}^{ - 3}}} \over 2}$$

= 3.125 $$ \times $$ 10$$-$$3 mol L$$-$$1 s$$-$$1
2
MCQ (Single Correct Answer)

AIPMT 2009

Half-life period of a first order reaction is 1386 seconds. The specific rate constant of the reaction is
A
0.5 $$ \times $$ 10$$-$$2 s$$-$$1
B
0.5 $$ \times $$ 10$$-$$3 s$$-$$1
C
5.0 $$ \times $$ 10$$-$$2 s$$-$$1
D
5.0 $$ \times $$ 10$$-$$3 s$$-$$1.

Explanation

Specific rate constant

k = $${{0.693} \over {{t_{1/2}}}}$$

= $${{0.693} \over {1386}}$$

= 0.5 $$ \times $$ 10-3 sec-1
3
MCQ (Single Correct Answer)

AIPMT 2009

For the reaction A + B $$ \to $$ products, it is observed that

(i)  on doubling the initial concentration of A only, the rate of reaction is also doubled and
(ii)  on doubling the initial concentration of both A and B, there is a change by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by
A
rate = k[A]2 [B]2
B
rate = k[A] [B]2
C
rate = k[A] [B]
D
rate = k[A]2 [B]

Explanation

R = k[A]m[B]n ... (i)

2R = k[2A]m[B]n ... (ii)

8R = k[2A]m[2B]n ... (iii)

from (i), (ii) and (iii), m = 1, n = 2

So, rate = k[A][B]2
4
MCQ (Single Correct Answer)

AIPMT 2009

In the reaction,
BrO$$_{3(aq)}^ - $$ + 5Br$$_{(aq)}^ - $$ + 6H+ $$ \to $$ 3Br2(l) + 3H2O(l).
The rate of appearance of bromine (Br2) is related to rate of disappearance of bromide ions as
A
$${{d\left[ {B{r_2}} \right]} \over {dt}} = - {5 \over 3}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$
B
$${{d\left[ {B{r_2}} \right]} \over {dt}} = {5 \over 3}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$
C
$${{d\left[ {B{r_2}} \right]} \over {dt}} = {3 \over 5}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$
D
$${{d\left[ {B{r_2}} \right]} \over {dt}} = - {3 \over 5}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$

Explanation

Rate = $${1 \over 3}{{d\left[ {B{r_2}} \right]} \over {dt}} = - {1 \over 5}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$

$$ \therefore $$ $${{d\left[ {B{r_2}} \right]} \over {dt}} = - {3 \over 5}{{d\left[ {B{r^ - }} \right]} \over {dt}}$$

EXAM MAP

Joint Entrance Examination

JEE Advanced JEE Main

Graduate Aptitude Test in Engineering

GATE CE GATE ECE GATE ME GATE IN GATE EE GATE CSE GATE PI

Medical

NEET

CBSE

Class 12